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FTS: A Distributed Energy-Efficient Broadcasting
Scheme Using Fountain Codes for

Multihop Wireless Networks
Badri N. Vellambi, Nazanin Rahnavard, and Faramarz Fekri, Senior Member, IEEE

Abstract—We investigate the problem of reliable and energy-
efficient one-to-all broadcasting in multihop wireless networks,
and propose fractional transmission scheme (FTS) – a low-
complexity and scalable broadcasting scheme. FTS exploits the
broadcasting nature of wireless channels and random encoding
of rateless codes to reduce energy consumption while ensuring
reliable delivery of packets to all nodes in the network. In
the proposed scheme, different neighbors of a node share the
responsibility of transmitting packets by sending only a fraction
of encoded packets required by the node to successfully receive
the data sent by the source. A detailed analysis of the perfor-
mance of FTS is presented for grid and random deployment
networks. Further, extensive simulations compare our scheme
with present energy-efficient methods such as random linear
coding, multipoint relaying, dominant pruning, and broadcast
incremental power scheme. Simulations reveal that FTS offers
good performance and adaptability at a low computational cost.

Index Terms—Broadcasting, energy efficiency, multihop wire-
less networks, rateless codes, network coding.

I. INTRODUCTION

EFFICIENT network-wide broadcasting is an important
issue in wireless networks. Important performance met-

rics of a broadcasting scheme include reliability, energy ef-
ficiency, complexity, scalability, and latency. Based on the
specific application, some metrics are more important than
others. For example, when updating software in nodes of
a network, reliability is important, while latency may have
less importance. However, for real-time sensing, latency and
reliability are of paramount importance, whereas in battery-
powered sensor networks, energy efficiency is an important
metric.
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A large volume of work on efficient communication strate-
gies over multihop networks is available, and a good survey
of the protocols and tradeoffs can be found in [1] and [2].
However, our focus is on the setting where a large number of
packets have to be reliably and (energy-)efficiently broadcast
in a multihop wireless network. Here, we use reliability to
indicate that all nodes in the network must be able to retrieve
the data completely. Broadcasting has been explored using two
broad approaches depending on the processing capabilities of
nodes in the network.

In the first approach, where nodes are assumed to act only as
relays, reliable and energy-efficient broadcasting is equivalent
to the problem of finding a minimum-connected dominating-
set (MCDS) for the corresponding network graph. However,
determining an MCDS is an NP-complete problem [3] even
if a centralized algorithm utilizing the full knowledge of the
graph topology is employed. Some heuristic algorithms for
tackling this problem have been proposed in [4]–[8].

In the second model, each node has the capacity to relay
and to perform local processing and coding. This model was
first exploited in [9] and their work opened a new research
area known as network coding. Considerable work has been
done in this area including [10], [11] and references therein.
In this model, the problem is solvable by a polynomial-time
algorithm assuming that the network is directed. However, this
assumption is restrictive, since wireless networks consisting of
nodes with omnidirectional antennas are naturally undirected.
The issue of finding optimal directions for the edges is a
difficult problem, since the number of direction assignments
is exponential in the number of edges in the network.

Network coding (NC)† approach to efficient broadcast has
been studied extensively when the cost criterion is a separable
function of the flow on various directed edges of the network.
In this case, the problem decouples into two subproblems [10].
The first subproblem is to determine the subgraph over which
the actual network coding has to be performed and the packet
flow rate on each link in the subgraph. The second subproblem
is to determine the code to be used over the selected subgraph.

Optimal subgraph selection and edge flow identification for
a separable cost function is achieved by an elaborate linear
programming routine. Constraints are devised for each triple
(𝑣, 𝐽, 𝑡), where 𝑣 runs through all nodes, 𝐽 runs through all

†Although network coding refers to any operation from simple relaying
to complicated intermediate processing, we use this term to refer to network
coding as defined in [11].
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subsets of outgoing edges of 𝑣, and 𝑡 runs through all sinks in
the communication strategy. Thus, the number of constraints
for optimization for broadcast over a directed network of 𝑛
nodes with an average out-degree 𝐽 is about 𝑛22𝐽 [11], which
is impractical even for moderately dense networks.

To implement the packet flow rate identified from the
optimization routine, random linear coding (RLC) is em-
ployed [12]. In RLC, nodes generate random linear combina-
tions of received packets by treating packets as symbols over
a vector space of a finite field of size 𝑞 [10]. To be efficient, a
large 𝑞 must be chosen. A drawback of this coding scheme is
that the decoding at each node involves Gaussian elimination,
which has a computational complexity that is polynomial
in the number of packets. However, instead of using RLC,
practical coding techniques can also be employed at each node.
Rateless erasure coding is an attractive option that offers low-
complexity encoding and decoding [13]–[15]. The encoding
is a low-weight packet-level addition of input packets over
the binary field, and the decoding is performed by a simple
iterative decoder for erasure channels. In [15], [16], schemes
based on rateless codes for reliable multicast and broadcast
in lossy single-hop networks is studied. In such networks,
coding is optimal for all clients independent of their packet
loss rates, and no prior knowledge about the channel status
is needed. In multihop wireless networks, though optimality
depends on both the routing pattern and the coding scheme
employed, straightforward application of rateless codes to
simple multihop situations like the relay channel illustrate the
robustness these codes offer [17], [18].

A good broadcasting scheme for wireless networks must
ensure that (a) packets are conveyed efficiently through the
network, and (b) redundant transmissions are minimized. In
RLC, these issues are addressed by optimizing edge flows and
by generating random linear combinations over a large field.
Note that issue (b) can also be addressed by employing rateless
coding with a decode, re-encode and forward approach. Once
the original data is retrieved, nodes can perform rateless
encoding of the original data and transmit newly encoded
packets. However, to address issue (a), rateless coding must
be appended with a means of practical subgraph selection.
Schemes such as FBcast [19], CRBcast [20], and that of [21]
utilize practical routing schemes such as probabilistic routing
in conjunction with source encoding and/or intermediate node
processing to achieve this goal. While some of these are
network-unaware approaches, our approach combines: (1) a
novel local load-sharing approach to flow selection exploiting
hop-distance information, and (2) rateless coding using the de-
code, re-encode and forward approach. The following section
summarizes our contribution.

A. Contribution of The Paper

We propose fractional transmission scheme (FTS) – a low-
complexity scheme for reliable and energy-efficient one-to-
all broadcasting in stationary multihop wireless networks that
exploits the availability of neighborhood information around
each node. Each node is assumed to know its hop-distance
from the source, and that of its neighbors. In FTS, by using
hop-distance information, each node ascertains the fraction of

data it has to send to a select subset of neighbors. Further,
to reduce unwanted redundant transmissions, nodes operate in
a decode, re-encode and forward mode. Additionally, if each
node knows its geographical location and that of its neighbors,
FTS can be improved by allowing each node to adjust its
transmission radius depending on the farthest node to which
it needs to forward packets.

Analysis of FTS in grid and random deployment networks
is presented. In grid networks, the analytical results are
compared with the corresponding optimal case. For random
deployment networks, bounds on the asymptotic order of cost
of transmission offered by FTS are established. Though the
upper bound is based on a conjecture motivated by simula-
tions, the bound was found to be tight for large graphs. Next,
extensive simulation results are provided for grid and random
deployment networks. These results suggest that FTS offers
reliability, scalability and ease of implementation with a per-
formance that is comparable with competitive techniques such
as NC, Broadcast Incremental Power (BIP) [6], Multipoint
Relaying (MPR) [7], and Dominant Pruning (DP) [8].

II. BRIEF REVIEW OF RATELESS CODING

Rateless codes are a new class of error-control codes.
LT codes [14], raptor codes [15], and online codes [13]
are examples of such codes. The idea behind rateless codes
is that each receiver collects encoded data packets until it
can decode successfully. Unlike traditional codes, rateless
codes on erasure channels need no channel information, and
are therefore suitable candidates for applications where the
channel erasure probability is unknown. Another attractive
feature of rateless codes is their low-complexity encoding and
decoding algorithms.

To transmit 𝑛𝑝 packets, the encoder generates encoded
packets by performing random packet-level low-weight linear
combinations of input packets over the binary field. To gen-
erate an encoded packet, the encoder first selects a weight 𝑊
using an optimized distribution Ω(𝑥) =

∑
𝑖∈ℕ

Ω𝑖𝑥
𝑖, where

Ω𝑖 = Pr[𝑊 = 𝑤] [15]. It then selects 𝑊 data packets,
which are XORed componentwise to generate an encoded
data packet. This process is repeated until all decoders receive
sufficient number of encoded packets to decode the input data
packets. In general, the number of output packets required
for guaranteeing a high probability of successful decoding
of 𝑛𝑝 input packets is expressible as 𝛾𝑛𝑝, where 𝛾 ≥ 1 is
the rateless overhead. The decoding process is similar to that
of other sparse graph codes such as LDPC codes [22]. To
construct the sparse graph over which message-passing must
be performed, information about the input data packets used to
generate each encoded packet must be provided to the decoder.
One way to ensure this is by appending the required packet
information to the header of encoded packets using an average
of Ω′(1)⌈log2 𝑛𝑝⌉ bits. Note that this packet overhead is much
smaller than the corresponding overhead of RLC, which is
𝑛𝑝⌈log2 𝑞⌉ bits.

III. NETWORK MODELS AND TERMINOLOGIES

For analytical tractability, we consider the following setup.
A network of 𝑛 static nodes with omnidirectional antennas and
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a transmission range 𝑟 is assumed. Such a wireless network
can be modeled by a geometric undirected graph 𝐺(𝑉,𝐸),
where 𝑉,𝐸 are the set of nodes and edges, respectively. Two
nodes 𝑢 and 𝑣 share an edge if and only if the Euclidean
distance 𝑑(𝑢, 𝑣) between 𝑢 and 𝑣 is less than or equal to 𝑟.
We also assume that 𝑟 is large enough so that 𝐺(𝑉,𝐸) is
connected. The neighborhood 𝑁𝑟(𝑢) of a node 𝑢 is the set of
all nodes that are within a distance of 𝑟 units away from 𝑢
i.e., 𝑁𝑟(𝑢) := {𝑣 ∈ 𝑉 : 𝕀𝑟(𝑑(𝑢, 𝑣)) = 1}, where 𝕀𝑟(𝑥) = 1
if 0 < 𝑥 ≤ 𝑟, and 𝕀𝑟(𝑥) = 0 otherwise. Also, for each node
∂𝑢 := ∣𝑁𝑟(𝑢)∣. Lastly, 𝐵(𝑢, 𝑟) denotes the closed Euclidean
ball of radius 𝑟 around the node 𝑢.

The wireless nature of the network is modeled by the
assumption that any message that a node 𝑢 transmits is heard
by all nodes in 𝑁𝑟(𝑢). Also, we assume that the network
contains a unique source node 𝑠 and H : 𝑉 −→ ℕ ∪ {0}
denotes the hop-distance function that maps each node 𝑣 to
the hop-length of the shortest-hop path connecting 𝑠 to 𝑣.
Finally, we assume that the network is equipped with a one-
to-one node identifier function 𝑖𝑑 : 𝑉 −→ ℕ and each node
𝑣 knows 𝑖𝑑(𝑣). For simplicity, we assume that 𝑖𝑑 satisfies for
any 𝑢, 𝑣 ∈ 𝑉 and 𝑢 ∈ 𝑁𝑟(𝑣), if 𝑢 is closer to the source than
𝑣 then 𝑖𝑑(𝑢) < 𝑖𝑑(𝑣).

As in [6], we only consider the energy expended on RF
transmissions as the cost criterion for energy efficiency. The
cost for sending a packet by a node with transmission range
𝑟 is taken to be 𝑟2. We also denote the number of transmis-
sions per packet per node by 𝒩/𝑝/𝑛 and the corresponding
energy consumption per packet per node by 𝒞/𝑝/𝑛. Note that
if 𝑚𝑣 packets are losslessly sent by each node 𝑣 with a
transmission range 𝑟𝑣, then 𝒩/𝑝/𝑛 := 1

𝑛

∑
𝑣 𝑚𝑣 , where as

𝒞/𝑝/𝑛 := 1
𝑛

∑
𝑣 𝑚𝑣𝑟

2
𝑣 .

In simulations, transmissions in networks are assumed to be
subject to distance attenuation and Rayleigh fading. Therefore,
when a node 𝑢 with a nominal transmission range 𝑟 transmits,
the signal-to-noise (SNR) of the signal received at a node 𝑣
with distance 𝑑(𝑢, 𝑣) from the node 𝑢 is 𝜆𝑟2/𝑑(𝑢, 𝑣)𝛼, where
𝜆 is an exponentially-distributed random variable with unit
mean, and 𝛼 is an attenuation parameter called path loss.
The value of 𝛼 is usually between 2 and 4 depending on
the characteristics of the channel. In this work we assume
𝛼 = 2. A packet transmitted by a node 𝑢 is successfully
received by a node 𝑣 ∈ 𝑁𝑟(𝑢) if and only if the received
SNR exceeds a threshold 𝛽, i.e., 𝜆𝑟2/𝑑(𝑢, 𝑣)2 > 𝛽. Also,
𝛽 = 1

2 throughout this work. Here, it must be noted that the
exact value of 𝛽 does not alter our inferences, since it merely
scales the results. This simple model allows to treat noise as
an erasure phenomenon rather than fading, thereby allowing
rateless codes to be an excellent choice for data dissemination.
A more realistic treatment of an application of rateless codes
to fading channels can be found in [23].

A medium access control (MAC) scheme for packet colli-
sion avoidance is considered in simulations. Nodes that have
some packets to send contend to transmit over the wireless
medium in a way that no collision occurs. The MAC enables
a fair and realistic comparison of the latency of different
broadcasting schemes. Here, latency refers to the time taken
for all nodes in the network to successfully decode the data
sent by the source 𝑠. To avoid collisions and the hidden

terminal problem, MACs generally require two-hop neighbors
of a transmitting node to be silent. This is achieved by
incorporating a slotted CSMA scheme with mini-backoff [24].
As detailed in [25], each time unit in this MAC scheme has
three parts – a contention period for request to send (RTS)
transmissions, a period for clear to send (CTS) transmissions,
and finally a period for actual packet transmission. Though the
duration of RTS and CTS messages in comparison to the data
transmission period under this MAC affects the actual latency
of each algorithm, its effect on each of the broadcast scheme
is the same, thereby enabling a fair comparison.

Standard networks such as grid networks and randomly de-
ployed networks are considered in this paper. In grid networks,
the source is located in one of the four corners of a square
grid of 𝑙 rows and 𝑙 columns with neighbors spaced equally
away from each other. The transmission range 𝑟 is chosen to
be equal to the distance between any two neighboring nodes
constraining the maximum degree of a node in the network
to be four. The ideas and results in this case can be directly
generalized to square networks of 2𝑙 − 1 rows and columns
with the source in the center [26].

In random deployment networks, 𝑛 − 1 non-source nodes
are placed independently and uniformly at random in a field
of 𝐴 × 𝐴 sq. units, and the source is at (𝐴

2 ,
𝐴
2 ). Asymptot-

ically almost sure connectivity is ensured by assuming that
transmission range 𝑟𝑛 exceeds 𝑟∗𝑛, the asymptotic threshold
of almost sure connectivity radius [27]. Equivalently,

lim
𝑛→∞

𝑟𝑛
𝑟∗𝑛

> 1, where 𝑟∗𝑛 = 𝐴

√
log𝑛

𝜋𝑛
. (1)

IV. FTS: FRACTIONAL TRANSMISSION SCHEME

FTS is based on the idea that various neighbors of a node 𝑢
can share the load of packet transmission to 𝑢. It suffices that
each neighbor of a node just sends a fraction of the data such
that the total sum of all fractions received by the node from
its neighbors is enough for successful data recovery. However,
packets from different neighbors must be innovative to ensure
that transmissions are not redundant. This is enabled by the
use of rateless codes. Unlike the single-hop case, the proposed
scheme does not guarantee optimality in terms of energy-
efficiency or the total number of transmissions in the network.
However, at a node level, optimality in the sense of a small
decoding overhead holds. Also, in the proposed scheme, we
employ the decode, re-encode and forward paradigm. While
a forwarding-based scheme is favorable in sparse networks,
this paradigm suits densely-deployed networks, since mere
forwarding results in redundant receptions and an increase in
delay for successful decoding.

FTS uses hop-distance information to partition the neigh-
borhood of each node into two sets. The first, called the
parent set represents the neighbors of a node from which
the node receives packets. The second, called the children set
that represents the neighboring nodes to which a node must
transmit packets after decoding and re-encoding. FTS defines
the parent set 𝒫𝑟(𝑣) of node 𝑣 as:

𝒫𝑟(𝑣) =
{
𝑤 ∈ 𝑁𝑟(𝑣) :

H(𝑤) < H(𝑣) or
(H(𝑤) = H(𝑣)) ∧ (𝑖𝑑(𝑤) < 𝑖𝑑(𝑣))

}
.
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In the above definition, 𝑤 is a parent for 𝑣, if it is closer to the
source hop-wise. The second clause in the parent set definition
eliminates the event that two neighboring nodes depend on
each other for successful recovery of source data. Further, FTS
defines the children set of a node 𝑣 as 𝒞𝑟(𝑣) = 𝑁𝑟(𝑣)∖𝒫𝑟(𝑣).
The details of FTS are as follows.

A. Description of FTS

FTS includes three phases: Initial Fraction Exchange Phase,
Fraction Reduction Phase, and Data Transmission Phase. In
the first two phases, each node determines the fraction of data
that it has to send to its children, and the last phase is the
transmission phase. While it is possible to design a scheme
where a small subset of nodes do the majority of packet
delivery, FTS is designed to practically effect load balancing.
The first two phases achieve this goal in a practical fashion by
allowing each node to locally ascertain the fraction of data it
needs to transmit to its children. As a result, almost all nodes
contribute to data delivery.

In Initial Fraction Exchange Phase (Algorithm 1), each
node 𝑣 determines the number of neighbors 𝜅𝑣 = ∣𝒫𝑟(𝑣)∣
that will send data to 𝑣. Consequently, 𝑣 expects ⌈𝑛𝑝

𝜅𝑣
⌉ packets

(equivalently, a fraction of 1
𝜅𝑣

) from each node in 𝒫𝑟(𝑣). Once
𝑣 determines this fraction, it declares this fraction to 𝒫𝑟(𝑣).
Each node 𝑤 collects the list of fractions that it has to send
to its children 𝒞𝑟(𝑤). Each node then sets the maximum entry
in its list as the required fraction of data that it has to send.
For example, if 𝒞𝑟(𝑤) = {𝑢, 𝑣} with 𝜅𝑢 = 3 and 𝜅𝑣 = 4,
this means that 𝑢 and 𝑣 expect one-third and one-fourth of
the data from 𝑤, respectively. Then, 𝛼𝑤 = max (13 ,

1
4 ) =

1
3 .

On completing this phase, it is possible that for certain
nodes, the sum total of the fractions determined by its parent
nodes might be larger than one. In other words, it is possible
for a node 𝑢 ∈ 𝑉 to have

∑
𝑤∈𝒫𝑟(𝑢)

𝛼𝑤 > 1. Therefore, an
attempt to further reduce fractions is attempted by the Fraction
Reduction Phase (Algorithm 2). In this phase, each node
𝑣 instructs nodes in 𝒫𝑟(𝑣) to reduce their fractions equally
by 𝑓𝑣 := 1

𝜅𝑣
max{0, (∑𝑤∈𝒫𝑟(𝑣)

𝛼𝑤) − 1}, the amount over
and above the required fraction of data that 𝑣 receives from
𝒫𝑟(𝑣). Each node 𝑣 then transmits 𝑓𝑣 to its neighbors. A
node will reduce its fraction by the minimum of requested
reduction in fractions. The new fraction that node 𝑤 will send
is denoted by 𝛼′

𝑤. Figure 1 shows a small part of an example
network. Suppose 𝒫𝑟(𝑢1) = {𝑤1}, 𝒫𝑟(𝑢2) = {𝑤1, 𝑤2},
and 𝒫𝑟(𝑢3) = {𝑤2, 𝑤3, 𝑤4}, 𝒞𝑟(𝑤1) = {𝑢1, 𝑢2}, 𝒞𝑟(𝑤2) =
{𝑢2, 𝑢3}, 𝒞𝑟(𝑤3) = {𝑢3}, and 𝒞𝑟(𝑤4) = {𝑢3}. We have
𝜅𝑢1 = 1, 𝜅𝑢2 = 2, and 𝜅𝑢3 = 3. Therefore, 𝛼𝑤1 = 1,
𝛼𝑤2 = 1

2 , and 𝛼𝑤3 = 𝛼𝑤4 = 1
3 . In the fraction reduction

phase, we have 𝑓𝑢1 = 0, 𝑓𝑢2 = 1
4 , 𝑓𝑢3 = 1

18 . The final
fractions will therefore be 𝛼′

𝑤1
= 1, 𝛼′

𝑤2
= 1

2 − 1
18 = 4

9 , and
𝛼′

𝑤3
= 𝛼′

𝑤4
= 1

3 − 1
18 = 5

18 .
Once the first two phases are completed, we commence the

Data Transmission Phase (Algorithm 3). First, the source is
the only node in the network to be in the transmit phase,
which is marked by 𝑠𝑒𝑛𝑑_𝑝ℎ𝑎𝑠𝑒(𝑠) = 1. In this phase,
once a node 𝑣 receives max(𝛼𝑤 − 𝑓𝑣, 0)𝑛𝑝 packets from a
neighbor 𝑤 it sends acknowledgement of partial completeness
𝑃𝑎𝑐𝑘(𝑣 → 𝑤), and when it receives encoded packets sufficient

𝑤1𝑤2𝑤3𝑤4

𝑢1𝑢2𝑢3

Fig. 1. An illustrative example.

Algorithm 1 Initial Fraction Exchange Phase
1: for 𝑣 ∈ 𝑉 ∖ {𝑠} do
2: 𝛼𝑣 = 0.
3: end for
4: 𝛼𝑠 = 1.
5: for 𝑣 ∈ 𝑉 do
6: transmit: (𝑣,H(𝑣), 𝑖𝑑(𝑣))
7: end for
8: for 𝑣 ∈ 𝑉 do
9: transmit: (𝑣,H(𝑣), 𝜅𝑣 = ∣𝒫𝑟(𝑣)∣)
10: end for
11: for 𝑣 ∈ 𝑉 do
12: for 𝑤 ∈ 𝑁𝑟(𝑣)∖𝒫𝑟(𝑣) do
13: 𝛼𝑣 = max(𝛼𝑣 ,

1
𝜅𝑤

)

14: end for
15: transmit: (𝑣, 𝛼𝑣)
16: end for

Algorithm 2 Fraction Reduction Phase
1: for 𝑣 ∈ 𝑉 do
2: transmit: 𝑓𝑣 = max

(
1

𝜅𝑣

∑
𝑤∈𝒫𝑟(𝑣)

𝛼𝑤 − 1
𝜅𝑣

, 0
)

3: end for
4: for 𝑣 ∈ 𝑉 do
5: 𝛼′

𝑣 = max(𝛼𝑣 − min
𝑤∈𝒞𝑟(𝑣)

𝑓𝑤, 0)

6: end for

Algorithm 3 Data Transmission Phase
1: 𝑠𝑒𝑛𝑑_𝑝ℎ𝑎𝑠𝑒(𝑠) = 1
2: transmit: 𝑛𝑝𝛾 encoded packets
3: for 𝑣 ∈ 𝑉 ∖ {𝑠} do
4: 𝑠𝑒𝑛𝑑_𝑝ℎ𝑎𝑠𝑒(𝑣) = 0, 𝑑𝑜𝑛𝑒_𝑝ℎ𝑎𝑠𝑒(𝑣) = 0
5: end for
6: while ∃ 𝑣 ∈ 𝑉 with 𝑠𝑒𝑛𝑑_𝑝ℎ𝑎𝑠𝑒(𝑣) = 0, 𝑑𝑜𝑛𝑒_𝑝ℎ𝑎𝑠𝑒(𝑣) = 0 do
7: 𝐴 = {𝑢 ∈ 𝑉 : 𝑠𝑒𝑛𝑑_𝑝ℎ𝑎𝑠𝑒(𝑢) = 0, 𝑑𝑜𝑛𝑒_𝑝ℎ𝑎𝑠𝑒(𝑢) = 0}
8: for 𝑤 ∈ 𝐴 do
9: if 𝑤 has received 𝑛𝑝𝛾 encoded packets then
10: decode 𝑛𝑝 data packets
11: transmit: 𝐶𝑎𝑐𝑘(𝑤)
12: set 𝑠𝑒𝑛𝑑_𝑝ℎ𝑎𝑠𝑒(𝑤) = 1
13: else
14: if 𝑤 has received max(𝛼𝑧 − 𝑓𝑤 , 0)𝑛𝑝𝛾 packets from

neighbor 𝑧 then
15: transmit: 𝑃𝑎𝑐𝑘(𝑤 → 𝑧)
16: end if
17: end if
18: end for
19: 𝐵 = {𝑢 ∈ 𝑉 : 𝑠𝑒𝑛𝑑_𝑝ℎ𝑎𝑠𝑒(𝑢) = 1}
20: for 𝑡 ∈ 𝐵 do
21: if all neighbors have either sent a 𝐶𝑎𝑐𝑘 or a 𝑃𝑎𝑐𝑘 directed at 𝑡 then
22: set 𝑠𝑒𝑛𝑑_𝑝ℎ𝑎𝑠𝑒(𝑡) = 0, 𝑑𝑜𝑛𝑒_𝑝ℎ𝑎𝑠𝑒(𝑡) = 1
23: else
24: generate an encoded packet 𝑃 .
25: transmit: 𝑃
26: end if
27: end for
28: end while

to decode, it sends an acknowledgement of completeness
𝐶𝑎𝑐𝑘(𝑣) to its neighbors. When the latter occurs, the node
𝑣 decodes the data and commences its send phase, which
is marked by 𝑠𝑒𝑛𝑑_𝑝ℎ𝑎𝑠𝑒(𝑣) = 1. It then decodes and re-
encodes data using a rateless code and sends new encoded
packets until all children of 𝑣 are either complete or do
not need any more packets from 𝑣. Once the node 𝑣 has
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heard an acknowledgment (partial or complete) from each
of its children, it terminates the transmit phase by setting
𝑑𝑜𝑛𝑒_𝑝ℎ𝑎𝑠𝑒(𝑣) = 1 and 𝑠𝑒𝑛𝑑_𝑝ℎ𝑎𝑠𝑒(𝑣) = 0. Note that the
fractions ascertained in the former two stages are not utilized
by the nodes that are in their transmit phases. A node in
transmit phase encodes and transmits until it is instructed to
terminate encoding by each of its children. As is typical in
rateless applications, receiving nodes signal the termination
of encoding in transmitting nodes.

Lastly, we would like to highlight the role of 𝑃𝑎𝑐𝑘 in the
third phase. Suppose that the third phase is devised without
partial acknowledgements i.e., nodes only acknowledge com-
pleteness. Consider the example of Fig. 1 and the scenario
that 𝑤4, 𝑤3, 𝑤2, and 𝑤1 enter their third phases in that
order, and separated by a big gap in time. Then, 𝑤4 will
successfully transmit all packets for 𝑢3. The acknowledgement
of completeness from 𝑢3 will prevent 𝑤3 from transmitting
any packets. However, 𝑤2 will commence its transmit phase
later and convey all packets to 𝑢2 before 𝑤1 starts transmit-
ting. Therefore, 𝑢2 will acknowledge before 𝑤1 transmits an
encoded packet. However, due to the lack of any acknowledge-
ment from 𝑢1, 𝑤1 will send all packets to 𝑢1. Thus, a total
cost of three transmissions/packet will be incurred. Note that in
such a format for third phase, the first two phases can become
redundant. However, when 𝑃𝑎𝑐𝑘 is present, the total cost is
limited to two transmissions/packet. Thus, an improvement in
energy cost is obtained by terminating each 𝑤𝑖’s encoding
appropriately using partial acknowledgements.

B. Discussion of Various Overheads

The proposed scheme has four overhead messages/signals
whose effects on latency and transmission cost are described
below. Since the network is assumed to be stationary, the setup
overheads correspond to the Initial Fraction Exchange Phase
and the Fraction Reduction Phase, and have to be performed
just once. In the former phase, the determination of hop-counts
and initial fractions can be initiated by the source by flooding
a single packet periodically.

The second overhead is the rateless coding overhead 𝛾 that
corresponds to the ratio of the least number of packets that
are required at the decoder to attain a fixed decoding failure
probability to the number of input packets 𝑛𝑝. Note that the
coding overhead of the maximum likelihood decoder is smaller
than that of iterative decoding. However, iterative decoding
offers an attractive decoding complexity. In this work, we
set 𝛾 = 1.03 for encoding 𝑛𝑝 = 2000 packets. This choice
ensures that the probability of decoding failure under iterative
decoding is no more than 10−8 [13].

The third overhead is the bits needed to be appended to the
header of an encoded packet to identify the indices of packets
that were XORed to form the current packet. In rateless codes,
an average of Θ(log2 𝑛𝑝) bits must be appended to each
output packet. The overhead imposed by these additional bits
is considerably smaller than the corresponding overhead of
RLC.

The last overhead is that of acknowledgements in the third
phase of FTS. In the presence of losses, while each node
transmits 𝐶𝑎𝑐𝑘 is transmitted Θ(1) times, 𝑃𝑎𝑐𝑘 is transmitted

𝑂(𝑛𝑟2𝑛) times. A total of Θ(𝑛2𝑟2𝑛) partial acknowledgements
are sent throughout the network and any reduction in their size
results in considerable energy savings.

C. Analysis of FTS in Grid Networks

This section summarizes our results on grid networks.
Details of proofs of the results can be found in [25] and
[26]. For simplicity, lossless network case is first considered.
A simple extension to the case with signal attenuation and
Rayleigh fading channels is then presented.

1) Lossless Grid Networks: The following lemma presents
the result on the average number of transmissions per packet
per node for broadcasting in a grid when the source is at a
corner of the grid.

Lemma 1 (Lem. 1 [26]): For an 𝑙 × 𝑙 grid network with
the source at the corner of the grid, the average number of
transmissions per packet per node under FTS without the
second phase and when a rateless code of overhead 𝛾 is used
is given by 𝒩/𝑝/𝑛 = (𝑙2+2𝑙−4)𝛾

2𝑙2 .
Further, when the source is at a corner, the Fraction Reduction
Phase alters the fraction of exactly one node – the node
that is two hops from the source but not on any face of
the grid. This change, however, is asymptotically negligible.
Assuming that each node has a transmission range of 𝑟,
𝒞/𝑝/𝑛 = 𝒩/𝑝/𝑛𝑟

2 and from the above lemma, we note

that FTS requires 𝒞/𝑝/𝑛 = 𝛾𝑟2

2 (1 + 𝑜(1)) asymptotically. To
compare the costs of broadcasting using FTS and NC, we
fix the direction of edges so that a node with lower hop-
count can transmit to its neighbors with higher hop-count.
The following result shows that energy cost of FTS and NC
are asymptotically close.

Lemma 2 (Lem. 2 [25]): For an 𝑙 × 𝑙 grid network with
the source at the corner of the grid and with edge directions
such that a node with a smaller hop-distance transmits to
its neighbor with larger hop-distance, using NC, we obtain
𝒩/𝑝/𝑛 = (𝑙2+𝑙−2)

2𝑙2 .
From the above lemma, we note that, asymptotically, NC

makes 1
2 transmissions per packet per node for broadcasting

in the assumed directed graph. It should be noted that the
link directions chosen in the above lemma are not optimal,
and we can possibly reduce the transmission cost by choosing
a different set of directions. However, 1

3 is a lower bound
for the 𝒩/𝑝/𝑛 for any broadcasting scheme over an arbitrary
(connected) directed grid network. This follows from the fact
that each node in a connected directed grid can have at
most three outgoing edges and hence each transmission can
benefit at most three nodes. Interestingly, for an undirected
grid, 𝒩/𝑝/𝑛 = 1

3 can be achieved asymptotically by a simple
forwarding/routing scheme [26].

2) Lossy Grid Networks: In this setting, transmissions
are subject to distance attenuation and Rayleigh fading as
described in Section III. Assuming that the nodes have a
transmission range 𝑟 and two neighboring nodes in a grid
are apart by distance 𝑟, we have

Pr{A packet is successfully received} = Pr{𝜆 > 𝛽} = 𝑒−𝛽 .

Therefore, each node 𝑣 on the average needs to transmit 𝛼′
𝑣𝑛𝑝

𝑒−𝛽

packets instead of 𝛼′
𝑣𝑛𝑝 packets. We observe that the average
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costs ⟨𝒩/𝑝/𝑛⟩ and ⟨𝒞/𝑝/𝑛⟩ scale by factor 1
𝑒−𝛽 in comparison

to the lossless setting. Since in this work, we have 𝛽 = 1
2 , we

notice that for a pair of nodes, the effect of Rayleigh fading for
the grid with neighboring nodes placed at a distance exactly
equal to the transmission radius is a wireless erasure channel
with an erasure probability of 1− 𝑒−

1
2 .

D. Analysis of FTS on Lossless Randomly Deployed Networks

In this section, we analyze FTS to derive lower and upper
bounds on the expected cost of transmission per packet per
node assuming an absence of losses in the wireless medium.
Both bounds use an estimation of 𝜅𝑣 = ∣𝒫𝑟(𝑣)∣ for each node
𝑣 to estimate the expected fraction to be transmitted by each
node. Also, as mentioned before, the transmission radius is
assumed to be 𝑟𝑛 = 𝜁𝑟∗𝑛 with 𝜁 > 1, thereby guaranteeing
connectivity asymptotically almost surely.

1) Lower Bound on the Performance of FTS: First, we
notice that to derive a lower bound for 𝒩/𝑝/𝑛, one must
bound from above the numbers 𝜅𝑣 for each node 𝑣. Each
node 𝑣 in its neighborhood sees 𝑌𝑣 neighbors, where 𝑌𝑣 is
a binomial random variable with parameters 𝑛 − 1 and 𝜋𝑟2

𝑛

𝐴2 .
Thus, in a given deployment, 𝑣 can listen to at most 𝑌𝑣 nodes.
Thus 𝜅𝑣 ≤ 𝑌𝑣. However, this evaluation naïvely assumes that
every node receives from all its neighbors, which is unlikely
in practice. The following result presents a rigorous extension
of the above argument.

Theorem 1: 𝒩/𝑝/𝑛 for FTS without the second phase over
a random deployment network of 𝑛 nodes with transmission

radius 𝑟𝑛 = 𝜁𝑟∗𝑛 with 𝜁 > 1 satisfies
𝑛𝜋𝑟2

𝑛𝒩/𝑝/𝑛

𝐴2 ≥ 1 a.a.s.
Proof: Please refer to Appendix B.

2) Upper Bound on the Performance of FTS: To estimate
an upper bound on the expected fraction of transmission, one
must find a lower bound on the number of parent nodes to
which each node will listen. Consider the following scenario as
illustrated in Fig. 3, where a node 𝑤 is situated geographically
at point 𝐴 at a distance 𝐷 > 𝑟𝑛 units away from the source
at point 𝑆. Suppose that 𝐻(𝑤) = 𝑖 > 1. The nodes in the
transmission range of 𝑤 that are closer to the source than 𝑤
are those that lie both in the circle centered at point 𝐴 and
that centered at 𝑠. From simulations we see that with a very
high probability there is at least one node in the neighborhood
of 𝑤 with a hop-distance 𝑖 − 1 from the source and is closer
to the source than 𝑤. Figure 2 presents the variation of the
probability P(𝑛, 𝑟𝑛) that a node in an instance of random
graph does not have a neighbor that is closer and has smaller
hop-distance from the source. The figure presents simulations
performed for 𝑛 = 500, 1000, and 1500, 𝐴 = 100, and for
varying transmission radii 𝑟𝑛

𝑟∗
𝑛
. It is noticed that this probability

is monotonically decreasing with increasing 𝑛 and 𝑟𝑛. We
conjecture that asymptotically this event occurs for almost all
nodes almost surely. A detailed discussion on this conjecture
is presented in Appendix C.

Assuming the above conjecture, for the aforementioned
node 𝑤 located at point 𝐴, we see that there exists a node
𝑣 ∈ 𝑁𝑟𝑛(𝑤) that is closer to 𝑠 than 𝑤 and has a strictly
smaller hop-distance. Then, all nodes that are located in the
transmission range of both 𝑤 and 𝑣 and are closer to the source
must have a hop-distance of no more than 𝑖. Thus, nodes in
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Fig. 3. Illustration of Δ(𝑟,𝐷) used for deriving the upper bound.

the area common to all the three circles (the circle centered at
source passing through 𝑣 and the circles of radius 𝑟𝑛 centered
at 𝑣 and 𝑤, resp.) are expected to transmit to 𝑤 under FTS.
It can be shown that the area common to all the circles is
minimum when 𝑣 is located at 𝐵 – one of the two points of
intersection between the two circles centered at 𝐴 and 𝑆 as
illustrated in Fig. 3. Evaluation of this minimum area yields

Δ(𝑟𝑛, 𝐷) :=
4𝜋 − 3

√
3

12
𝑟2𝑛 +𝐷2 sin−1(

𝑟𝑛
2𝐷

)− 𝑟𝑛
2

√
𝐷2 − 𝑟2𝑛

4

≥ (
𝜋

3
−

√
3

4
)𝑟2𝑛 =: Δ(𝑟𝑛). (2)

By the design of FTS, every node in a region of area Δ(𝑟𝑛)
transmits to 𝑤, since every node in this region has a hop-
count of at most 𝑖 and is closer than 𝑤. Therefore, for every
𝑤 ∈ 𝑉 such that 𝑑(𝑤, 𝑠) > 𝑟𝑛, there is a region 𝐴𝑤 of area
Δ(𝑟𝑛) such that all nodes in 𝐴𝑤 are parents of 𝑤 under FTS.
Without affecting the results, we can drop the distance clause
𝑑(𝑤, 𝑠) > 𝑟𝑛, since Thm. 2 guarantees that there are at most
𝜋𝑟2

𝑛𝐺−1
> (𝜁−2)

𝐴2 = 𝑜(𝑛) nodes within a distance of 𝑟𝑛 from 𝑠.
Let 𝑋𝑤 be the random variable denoting number of nodes
in the region 𝐴𝑤 (other than 𝑣). Since this region 𝐴𝑤 is not
strictly a function of the position of 𝑤 alone, the distribution
𝑋𝑤 is not clear. However, a reasonable assumption to make is
that 𝑋𝑤 is binomial with parameters 𝑛− 2 and 𝑞𝑛 = Δ(𝑟𝑛)

𝐴2 .
Also note that 𝑋𝑤 is a local random variable depending on
the events that occur within a radius 𝑟𝑛 around 𝑤. Using the
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above assumptions and notations, we have

𝛼𝑣 = max
𝑤∈𝒞𝑣

1

∣𝒫𝑤∣ ≤ max
𝑤∈𝒞𝑣

1

1 +𝑋𝑤
≤ max

𝑤∈𝑉

𝕀𝑟𝑛(𝑑(𝑣, 𝑤))

1 +𝑋𝑤
=: 𝜏𝑣.

Define 𝒵 :=
∑

𝑣 ∕=𝑠 𝜏𝑣 . Then 𝒩/𝑝/𝑛 ≤ 1
𝑛 (1 + 𝒵). Also note

that {𝜏𝑣 : 𝑣 ∕= 𝑠} are identically distributed. Fix 𝑣, 𝑣′ ∈ 𝑉 ∖{𝑠}
with 𝑣 ∕= 𝑣′. Then, 𝐸[𝒵] = (𝑛− 1)𝐸[𝜏𝑣]. To compute 𝐸[𝜏𝑣],
just as in Appendix B, we set 𝑊 = ∣𝑁2𝑟𝑛(𝑣)∣ and 𝑝𝑛 :=

𝜋𝑟2
𝑛

𝐴2 .

Then 𝜇𝑊 = 𝐸[𝑊 ] =
4𝜋(𝑛−1)𝑟2

𝑛

𝐴2 , and for 𝛿 ∈ (0, 1),

Pr[∣ 𝑊
𝜇𝑊

− 1∣ ≤ 𝛿]
(8,9)
≤ 𝑒−𝜇𝑊𝐺>(1+𝛿) + 𝑒−𝜇𝑊𝐺<(1−𝛿). (3)

Further, conditioned on 𝒴 = {∣𝑁2𝑟𝑛(𝑣)∣ = 𝑚 + 1}, the
distribution of 𝑋𝑤 for a node 𝑤 ∈ 𝑁𝑟𝑛(𝑣) is given by

Pr[𝑋𝑤 = 𝑗∣𝒴] =
(
𝑚

𝑗

)
𝑞𝑗𝑛

(2𝑝𝑛)𝑗
(1 − 𝑞𝑛

2𝑝𝑛
)𝑚−𝑗

∴ Pr[𝑋𝑤 ≤ (1 − 𝛿)2𝑛𝑞𝑛∣𝒴] ≤ 𝑒
−𝐺<

(
4(1−𝛿)2𝑛𝑝𝑛

𝑚

)
𝑚𝑞𝑛
4𝑝𝑛 .

Let ℰ := {∣ 𝑊
𝜇𝑊

−1∣ ≤ 𝛿} and 𝜚 := Pr[𝜏𝑣 >
1

(1−𝛿)2𝑛𝑞𝑛
]. Then,

𝜚 ≤ Pr[𝜏𝑣 >
1

(1− 𝛿)2𝑛𝑞𝑛
∣ℰ ] + Pr[ℰ𝑐] (4)

≤ Pr[∃𝑤 ∈ 𝑁𝑟𝑛(𝑣) s.t. 𝑋𝑤 < (1− 𝛿)𝑛𝑞𝑛∣ℰ ] + Pr[ℰ𝑐]

(𝑎)

≤ (1 + 𝛿)𝜇𝑊 𝑒−(1−𝛿)2𝑛𝑞𝑛𝐺<(1−𝛿) + Pr[ℰ𝑐] → 0,

where (a) follows from union bound and (3). Thus, ∀ 𝛿 > 0,
Pr[𝜏𝑣 ≤ 1

(1−𝛿)2𝑛𝑞𝑛
] → 1. Therefore, 𝑛𝑞𝑛𝐸[𝜏𝑣] ≥ 1 asymptot-

ically. Further,

𝐸(𝒵2) = (𝑛− 1)𝐸[𝜏2𝑣 ] + 2

(
𝑛− 1

2

)
𝐸[𝜏𝑣𝜏𝑣′ ], and

𝐸[𝜏𝑣𝜏𝑣′ ]
(𝑏)

≤ 𝐸>4𝑟𝑛 [𝜏𝑣𝜏𝑣′ ] +
16𝜋𝑟2𝑛
𝐴2

𝐸≤4𝑟𝑛 [𝜏𝑣𝜏𝑣′ ]

(𝑐)
= 𝐸2[𝜏𝑣] +

8𝜋𝑟2𝑛
𝐴2

𝐸≤4𝑟𝑛 [𝜏
2
𝑣 + 𝜏2𝑣′ ]

(𝑑)

≤ 𝐸2[𝜏𝑣] +
16𝜋𝑟2𝑛
𝐴2

Θ(
1

log2 𝑛
)

∴ 𝐸[𝒵2] ≤ (𝑛− 1)2𝐸2[𝜏𝑣] + (𝑛− 1)var(𝜏𝑣) + 𝑜(𝑛2𝐸[𝜏2𝑣 ])

= 𝐸2[𝒵] + 𝑜(𝐸2[𝒵]). (5)

Note that in the above, (b) follows by splitting the expectation
operator by conditioning on the event that 𝑑(𝑣, 𝑣′) ≤ 4𝑟𝑛, and
𝐸>4𝑟𝑛 and 𝐸≤4𝑟𝑛 denote the respective conditional expecta-
tion operators; (c) follows from the fact that when 𝑑(𝑣, 𝑣′) >
4𝑟𝑛, the random variables 𝜏𝑣 and 𝜏𝑣′ are asymptotically
uncorrelated due to their local nature; and (d) follows from
the assumption that 𝜏𝑣, 𝜏𝑣′ are binomial, and their maximum
is asymptotically of the same order as that of the average
degree. Application of Chebychev inequality confirms the
concentration of 𝒵 around its mean. Therefore,

𝒩/𝑝/𝑛 =
1

𝑛
+

1

𝑛

∑
𝑣 ∕=𝑠

𝛼𝑣 ≤ 1 + 𝒵
𝑛

a.a.s.
≤∗ 𝐴2

𝑛Δ(𝑟𝑛)
(1 + 𝑜(1)).

Note that when the radius of connectivity is 𝑟𝑛 = 𝜁𝑟∗𝑛 with
𝜁 > 1, the above result and Thm. 1 together imply

1 ≤
(
𝜋𝑛𝑟2𝑛
𝐴2

𝒩/𝑝/𝑛

)
≤∗ 12𝜋

(4𝜋 − 3
√
3)

a.a.s. (6)

thereby establishing the asymptotic order of variation of
𝒩/𝑝/𝑛. Note that the upper bound is not based on a proof, but
on an argument based on reasonable assumptions motivated
from simulations. This fact is highlighted by the notation
≤∗ in above equations. To compare the cost of FTS with
the optimal scheme, notice that the size of an MCDS is at
least 𝑛

𝑀𝑛
, where 𝑀𝑛 is the maximum degree of a node in

the random deployment. From Thm. 2, we notice that the
minimum asymptotic cost of broadcasting 𝒩/𝑝/𝑛,min is at least

𝑛𝑝𝑛𝒩/𝑝/𝑛,𝑁𝐶 ≥ 𝑛𝑝𝑛𝒩/𝑝/𝑛,min ≥ 𝑛𝑝𝑛

𝑀𝑛

a.a.s≥ 1

𝐺−1
> (𝜁−2)

. (7)

Thus, we see that we can achieve the same order of broadcast
cost per packet per node asymptotically when employing FTS.
Finally, in the presence of noise phenomena, the transmission
cost per packet per node for random deployment networks gets
appropriately scaled just as in the case of grid networks.

V. SIMULATION RESULTS

To compare the energy efficiency of FTS with other broad-
casting algorithms such as MPR, DP, BIP, and NC, simulations
were performed on both square grids and randomly deployed
networks. Though all the schemes aim at constructing a dom-
inating set, DP and MPR are localized algorithms, whereas
BIP is centralized. Owing to their random/greedy nature, these
algorithms are hard to analyze over the random deployment
setting and have been studied using simulations.

For simulations, the rateless code overhead 𝛾 was set at
1.03, since this choice is sufficient to guarantee a success
probability of over 1 − 10−8 when transmitting 𝑛𝑝 ≥ 2000
packets [13]. The channel model and MAC scheme as ex-
plained in Section III were considered for these simulations.
The size of the packets was assumed to be the same in all
schemes. Also, it is worth noting that the amount of informa-
tion payload per packet is higher for FTS in comparison with
NC as described in Section IV-B.

Schemes such as BIP and MPR are originally tailored for
lossless networks, and they do not guarantee reliability in lossy
networks. However, they can be extended to lossy networks us-
ing either multiple retransmissions or forward error correction
at each link. In this way, if a channel has a corresponding loss
probability of 𝜖, the number of transmissions will be scaled
by a factor of 1

1−𝜖 on the average.

A. Grid Networks

Simulations were performed for varying grid sizes to eval-
uate the transmission costs and latency of various schemes.
Figure 4 depicts the transmission cost 𝒞/𝑝/𝑛 for different
reliable broadcasting schemes for grid networks of varying
sizes with source at the corner. It is assumed that any two
adjacent nodes is the same as transmission radius, i.e., 𝑟 = 1.
The transmissions are subject to distance attenuation and
Rayleigh fading with probability of successful delivery of a
packet as 𝑒−

1
2 , since 𝛽 = 1

2 . For FTS, both simulation and
analytical results as derived in Section IV-C are presented.
As we can see, the simulation and analytical results match.
We also depict the cost of broadcasting with NC. For large
grid networks, the only difference in the cost of broadcasting
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Fig. 5. Latency of schemes in lossy 𝑙× 𝑙 grids with the source at a corner.

between FTS and NC is the factor 𝛾, the overhead of rateless
coding. For NC, it is assumed that RLC over a large field
𝐺𝐹 (𝑞) results in no coding overhead (for the price of higher
complexity of decoding). As the number of packets 𝑛𝑝 is
increased, 𝛾 approaches one, and FTS and NC result in the
same energy consumption. The asymptotic optimal cost of

1

3𝑒−
1
2

obtainable from the optimal scheme detailed in [26]
is also presented in Fig. 4. Note that NC does not offer the
asymptotically-optimal cost here because of the sub-optimality
of the assumed edge directions.

Figure 5 depicts the latency for various schemes for reliable
delivery of 2000 packets in lossy 𝑙 × 𝑙 grids with the source
at the corner. The latency of NC is not included, since it is
unclear how to integrate the MAC layer and interference in
NC. Nevertheless, we expect NC to have a lower latency than
FTS, since the latter uses a decode, re-encode and forward
paradigm. Here, it must be noted that the energy consumed
by all schemes remain unaltered when the ideal collision-free
MAC (with two-hop silence) is used instead of the one chosen
in this work. However, the latencies of the various schemes
will differ based on the chosen MAC.

B. Random Deployment Network

Here, we consider 𝑛 − 1 non-source nodes each with
transmission range 𝑟 randomly deployed in an area 100× 100
square units, for different values of 𝑛 and 𝑟. The source is
assumed to be at the center of the area. The transmission
range 𝑟 in each case is selected such that the resulting graph

TABLE I
𝒞/𝑝/𝑛 IN RANDOM NETWORKS

𝑛 𝑟 Approach 𝒞/𝑝/𝑛

15 23 NC 331.10
FTS 357.64

20 22 NC 326.04
FTS 336.61

25 21 NC 300.29
FTS 323.05

is connected. Transmissions are subject to attenuation due to
distance and Rayleigh fading with parameter 𝛽 = 1

2 . First,
we compare FTS and NC. To compare FTS with NC, the
assignment of directions for NC is set to be the same as that
for FTS. Note that the edge directions for FTS are based on
hop-distances, as is described in Section IV. Table I compares
𝒞/𝑝/𝑛 for FTS and NC for varying 𝑛 and 𝑟 in a region of
100×100 sq. units. Clearly, given the same directions as FTS,
NC has a lower cost, since it involves flow optimization for
the selected directions. However, the excess cost of FTS is less
than 8% in comparison with that of NC. Thus, FTS can be
seen to be a simple, easily-implementable broadcasting option
for such networks with an energy cost relatively close to that
of NC.

Next, we consider networks of up to 500 nodes. Due to the
complexity of the optimization sub-routine, we were unable
to simulate NC for this setting. Therefore, we compare FTS
with DP, MPR, and BIP for large networks.

In BIP, nodes can have different transmission ranges to
decrease the cost of broadcasting. Given the option that nodes
can change their transmission range, we can extend FTS to
FTS𝑎𝑑𝑎𝑝𝑡. FTS𝑎𝑑𝑎𝑝𝑡 is similar to FTS except that every node
𝑣 in the network has the option of reducing its transmission
range from 𝑟𝑛 to 𝑟𝑛𝑣 , where 𝑟𝑛𝑣 is the distance between 𝑣
and the farthest child of 𝑣 that is going to listen to 𝑣 in the
data transmission phase (Algorithm 3). Thus, the probability
that a child 𝑤 of 𝑣 receives a packet from 𝑣 decreases, since
we have

Pr{𝑤 receives a packet from 𝑣} = Pr{𝜆 > 𝛽𝑑2(𝑣, 𝑤)/𝑟𝑛
2
𝑣}

= 𝑒−𝛽𝑑2(𝑣,𝑤)/𝑟𝑛
2
𝑣 ≤ 𝑒−𝛽𝑑2(𝑣,𝑤)/𝑟2

𝑛 .

Therefore, in FTS𝑎𝑑𝑎𝑝𝑡 more transmissions are needed. How-
ever, each transmission has less cost. Overall, we can expect
FTS𝑎𝑑𝑎𝑝𝑡 to be more energy-efficient than FTS.

Figure 6 compares 𝒞/𝑝/𝑛 for FTS, FTS𝑎𝑑𝑎𝑝𝑡, MPR, DP,
and BIP. BIP offers the best performance, whereas the two
proposed schemes are the next best choice. However, we
should note that BIP is a centralized scheme that needs global
knowledge of the network, and is computationally intensive.
In contrast, FTS and FTS𝑎𝑑𝑎𝑝𝑡 are distributed schemes with
low complexity. Comparing the performance of FTS𝑎𝑑𝑎𝑝𝑡 and
FTS with distributed schemes DP and MPR, we see that FTS
and FTS𝑎𝑑𝑎𝑝𝑡 have much better performance. For large 𝑛,
the improvement due to adaptive transmission range is small
because of the fact that there are Θ(log𝑛) nodes uniformly
distributed in the neighborhood of each node. Consequently,
the distance between each node and its farthest neighbor is
close to 𝑟𝑛.



VELLAMBI et al.: FTS: A DISTRIBUTED ENERGY-EFFICIENT BROADCASTING SCHEME USING FOUNTAIN CODES FOR MULTIHOP WIRELESS . . . 3569

50 100 200 500

21 17 15 10

50

100

150

200

250

300

350

400
𝒞 /

𝑝
/
𝑛

𝑛

𝑟𝑛

FTS𝑎𝑑𝑎𝑝𝑡

FTS

MPR

DP

BIP

Fig. 6. 𝒞/𝑝/𝑛 of different broadcasting schemes in random networks.

21 17 15 10

3

4

5

6

7

8

9

10

11

12

13
x10

4

50 100 200 500

𝑟𝑛

FTS

MPR

DP

BIP

L
at

en
cy

(t
im

e
un

its
)

𝑛

FTS𝑎𝑑𝑎𝑝𝑡

Fig. 7. Latency of different schemes for broadcasting 2000 packets over a
random network.

Figure 7 depicts the latency of different broadcasting
schemes. DP seems to have the best latency whereas FTS
and FTS𝑎𝑑𝑎𝑝𝑡 guarantee slightly worse latency performance.
FTS𝑎𝑑𝑎𝑝𝑡 has slightly larger latency than FTS, which can be
attributed to the increase in the number of transmission due
to reduced transmission power in FTS𝑎𝑑𝑎𝑝𝑡.

In order to compare our analytical bounds derived in Sec-
tion IV-D with the actual performance of FTS, we simulated
FTS (without second phase) for networks of various sizes
assuming no channel losses. Figure 8 presents the upper bound
of (6) and the lower bound of Theorem 1 in comparison to the
simulation results for FTS. It also presents the lower bound
for the minimum possible cost of transmission per packet per
node, which is based on the maximum degree of nodes in
the network. It can be seen that the upper bound is fairly
accurate in predicting the actual performance of FTS for large
networks.

VI. CONCLUSION

In this work, the application of rateless codes for broad-
casting in multihop wireless networks is explored. A reliable
and scalable broadcasting algorithm known as the fractional
transmission scheme is proposed. The scheme exploits local
network information and employs rateless coding at each node
to reduce unwanted redundancy in transmissions. The cost of
transmission of the proposed scheme is derived for both grid
and random deployment networks and a comparison of our
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Fig. 8. Illustration of the analytical bounds derived for FTS.

scheme with other broadcasting algorithms such as MPR, DP,
BIP and NC is presented. Simulation results show that the
performance of proposed scheme is comparable to complex
schemes such as BIP and NC. Due to its low complexity
and competitive performance, FTS is seen to be a practical
broadcasting scheme in large-scale wireless ad-hoc networks.

APPENDIX A

Lemma 3: Let 𝐺> : [1, 𝑒] → [0, 1], 𝐺>(𝑥) = 1 − 𝑥 +
𝑥 log 𝑥, 𝐺< : [0, 1] → [0, 1], 𝐺<(𝑥) = 1 − 𝑥 + 𝑥 log 𝑥, and
𝐺−1

> , 𝐺−1
< be their inverses. Let 𝑋 be a binomial random

variable with parameters 𝑛 and 𝑝. Then, for 𝛿 ∈ (0, 1),

𝑃 [𝑋 > (1 + 𝛿)𝑛𝑝] ≤ 𝑒−𝑛𝑝𝐺>(1+𝛿) (8)

𝑃 [𝑋 < (1− 𝛿)𝑛𝑝] ≤ 𝑒−𝑛𝑝𝐺<(1−𝛿) (9)

Proof: This is a restatement of Chernoff bound for
binomial RVs [27].

Theorem 2: The max. degree 𝑀𝑛 and min. degree 𝑚𝑛 in a
random geometric graph of 𝑛 nodes with transmission radius
𝑟𝑛 = 𝜁𝑟∗𝑛 with 𝜁 > 1 over a region of 𝐴×𝐴 sq. units satisfy

𝐺−1
< (

1

𝜁2
) ≤ lim

𝑛→∞
𝑚𝑛
𝑛𝜋𝑟2

𝑛

𝐴2

≤ lim
𝑛→∞

𝑀𝑛

𝑛𝜋𝑟2
𝑛

𝐴2

≤ 𝐺−1
> (

1

𝜁2
) a.s.

(10)
Proof: The proofs of the exact limits can be found in

Thm. 6.14 and Thm. 7.14 of [27].

APPENDIX B

We note that the fraction that a node 𝑣 determines at the
end of the first stage is bounded below as

𝛼𝑣 ≥ min
𝑤:𝑑(𝑣,𝑤)≤𝑟𝑛

1

∣𝑁𝑟(𝑤)∣ =
∗

min
𝑤∈𝑉

𝕀𝑟𝑛(𝑑(𝑣, 𝑤))∑
𝑢∈𝑉 𝕀𝑟𝑛(𝑑(𝑢,𝑤))

=: 𝛽𝑣,

where
∗

min denotes the operator selecting the smallest pos-
itive number from a set (and zero if the set is empty). Let
𝒵 :=

∑
𝑣 ∕=𝑠 𝛽𝑣. Since each random variable 𝛽𝑣 has the same

distribution, we have 𝐸[𝒵] = (𝑛 − 1)𝐸[𝛽𝑡] ∀ 𝑡 ∈ 𝑉 ∖ {𝑠}.
Fix 𝑡 ∈ 𝑉 ∖ {𝑠}. To compute 𝐸[𝛽𝑡], set 𝑊 = ∣𝑁2𝑟𝑛(𝑡)∣
and 𝑝𝑛 :=

𝜋𝑟2
𝑛

𝐴2 , then 𝜇𝑊 = 𝐸[𝑊 ] =
4𝜋(𝑛−1)𝑟2

𝑛

𝐴2 , and for
𝛿 ∈ (0, 1),

Pr[∣ 𝑊
𝜇𝑊

−1∣ ≤ 𝛿]
(8,9)
≤ 𝑒−𝜇𝑊 𝐺>(1+𝛿)+𝑒−𝜇𝑊𝐺<(1−𝛿). (11)
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Further, conditioned on 𝒴 = {∣𝑁2𝑟𝑛(𝑡)∣ = 𝑚 + 1}, the
distribution of the number of neighbors of a node 𝑤 ∈ 𝑁𝑟𝑛(𝑡)
is given by

Pr[∂𝑤 − 1 = 𝑗∣𝒴] =
(
𝑚

𝑗

)
3𝑚−𝑗

4𝑚

∴ Pr[∂𝑤 − 1 ≥ (1 + 𝛿)2𝑛𝑝𝑛∣𝒴] ≤ 𝑒
−𝐺>

(
4(1+𝛿)2𝑛𝑝𝑛

𝑚

)
𝑚
4
.

Let ℰ := {∣ 𝑊
𝜇𝑊

−1∣ ≤ 𝛿} and 𝜌 := Pr[𝛽𝑡 <
1

(1+𝛿)2𝑛𝑝𝑛
]. Then,

𝜌 ≤ Pr[𝛽𝑡 <
1

(1 + 𝛿)2𝑛𝑝𝑛
∣ℰ ] + Pr[ℰ𝑐] (12)

≤ Pr[∃𝑤 ∈ 𝑁𝑟𝑛(𝑡) s.t. ∂𝑤 > (1 + 𝛿)2𝑛𝑝𝑛∣ℰ ] + Pr[ℰ𝑐]

(𝑎)

≤ (1 + 𝛿)𝜇𝑊 𝑒
−(1−𝛿)𝜇𝑊 𝐺>

(
4(1+𝛿)2𝑛𝑝𝑛
(1+𝛿)𝜇𝑊

)
+ Pr[ℰ𝑐] → 0,

where (a) follows from union bound and (11). Thus, ∀ 𝛿 > 0,
Pr[𝛽𝑡 ≥ 1

(1+𝛿)2𝑛𝑝𝑛
] → 1. Hence, 𝑛𝑝𝑛𝐸[𝛽𝑡] ≥ 1 asymptoti-

cally. Now, fix 𝑡 ∈ 𝑉 ∖ {𝑠} and 𝑡′ ∈ 𝑉 ∖ {𝑠, 𝑡}. Then,

𝐸(𝒵2) = (𝑛− 1)𝐸[𝛽2
𝑡 ] + 2

(
𝑛− 1

2

)
𝐸[𝛽𝑡𝛽𝑡′ ], and (13)

𝐸[𝛽𝑡𝛽𝑡′ ]
(𝑏)

≤ 𝐸>4𝑟𝑛 [𝛽𝑡𝛽𝑡′ ] +
16𝜋𝑟2𝑛
𝐴2

𝐸≤4𝑟𝑛 [𝛽𝑡𝛽𝑡′ ]

(𝑐)

≤ 𝐸2[𝛽𝑡] +
8𝜋𝑟2𝑛
𝐴2

𝐸≤4𝑟𝑛 [𝛽
2
𝑡 + 𝛽2

𝑡′ ]

(𝑑)

≤ 𝐸2[𝛽𝑡] +
16𝜋𝑟2𝑛
𝐴2

Θ(
1

log2 𝑛
)

∴ 𝐸[𝒵2] ≤ (𝑛− 1)2𝐸2[𝛽𝑡] + (𝑛− 1)var(𝛽𝑡) + 𝑜(𝑛2𝐸2[𝛽𝑡])

= 𝐸2[𝒵] + 𝑜(𝐸2[𝒵]). (14)

In the above, (b) follows by conditioning the expectation
operator based on the event that 𝑑(𝑡, 𝑡′) ≤ 4𝑟𝑛, and 𝐸>4𝑟𝑛 and
𝐸≤4𝑟𝑛 denote the respective conditional expectation operators;
(c) follows from the fact that when 𝑑(𝑡, 𝑡′) > 4𝑟𝑛, 𝛽𝑡 and
𝛽′
𝑡 are asymptotically uncorrelated due to their local nature;

and (d) holds because the largest value 𝛽𝑡, 𝛽𝑡′ can take is
the reciprocal of the minimum degree of the graph, which
is at least 𝐺−1

< (𝜁−2)𝜁2 log𝑛 a.a.s. Therefore, by application
of Chebychev inequality, we confirm that 𝒵 is concentrated
around its mean. The claim then follows by noticing that

𝒩/𝑝/𝑛 =
1

𝑛
+

1

𝑛

∑
𝑣 ∕=𝑠

𝛼𝑣 ≥ 1 + 𝒵
𝑛

a.a.s.≥ 𝐴2

𝑛𝜋𝑟2𝑛
(1 + 𝑜(1)).

APPENDIX C
A DISCUSSION ON THE CONJECTURE OF SECTION IV-D

Several approaches in the literature of random geometric
graphs have analyzed the relation between Euclidean and
hop-distances [28]–[30]. The most relevant result is that of
Ellis et al. In [30], they showed that when 𝑟𝑛 > 𝑟∗𝑛, it
is asymptotically almost sure that the hop-distance 𝑑𝐺(𝑠, 𝑣)
between source 𝑠 and a node 𝑣 is given by

𝑑𝐺(𝑠, 𝑣) ≤ 𝑑(𝑣, 𝑠)

𝑟𝑛

(
1 + 𝑂

(√ log log𝑛

log𝑛

))
, (15)

where 𝑑(𝑣, 𝑠) denotes the Euclidean distance between 𝑣 and 𝑠.
Notice that the first term of the above equation corresponds to

≪ 𝑟𝑛

𝑟𝑛

𝑣

Fig. 9. Existence of short geographic paths.
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Fig. 10. Illustration of occurrence of annuli in a network with 𝑛 = 25000
and 𝑟𝑛 = 4𝑟∗𝑛.

the minimum number of hops taken by a hypothetical straight
line path from 𝑠 to 𝑣. The second term provides freedom for
paths to wiggle around this straight line due to the randomness
in node locations. Figure 9 illustrates the construction of a
shortest-hop path for a node 𝑣. To use the least number
of hops, it would be ideal if nodes are placed regularly 𝑟𝑛
apart from each other on the dashed line connecting 𝑠 and 𝑣.
However, due to the random realization, we can only identify
a path close to this line.

Since the deployment is uniform, the hop-distance of a node
can be expected to depend only on the distance from the
source. Therefore, nodes with the same hop-distance from the
source can be expected to partition the region into annuli.
Though this intuition is motivated by ensemble averages,
partitioning is also noticed in network realization instances.
For example, Fig. 10 depicts the hop-distances of nodes in a
network with 𝑛 = 25000, 𝑟𝑛 = 4𝑟∗𝑛, and 𝐴 = 1.

The difficulty in quantifying the monotonicity property
is pictorially illustrated in Fig. 11. Consider the situation
highlighted in Fig. 11(b), where the region of domain is
restricted to points 𝑗𝑟𝑛 away from 𝑠. Suppose that the nodes
that are within a distance of (𝑗 − 1)𝑟𝑛 from 𝑠 satisfy the
monotonicity conjecture. Then, their next-hop neighbors must
lie within a union of circles given by

ℬ𝑗−1 :=
∪

𝑣:𝑑(𝑠,𝑣)≤(𝑗−1)𝑟𝑛

𝐵(𝑣, 𝑟𝑛) (16)

Note that this region 𝐵(𝑠, 𝑗𝑟𝑛) ∖ ℬ𝑗−1 consists of a thin
annulus in addition to “kinks” in the region that are similar to
the dark region between points A, B and C of Fig. 11(a). It
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Fig. 11. Illustration of the monotonicity property.
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Fig. 12. Examples of non-monotonic paths.

is the presence of these kinks that make the region ℬ𝑗−1 non-
convex. While the nodes that fall in ℬ𝑗−1 can be connected
by an edge to a node that is in 𝐵(𝑠, (𝑗 − 1)𝑟𝑛), a node in the
kink ABC cannot be connected. In fact, it is possible that a
node in such a kink must rely on a node farther away from 𝑠
to receive forwarded data. However, an analytic quantification
of the rarity of such events seems elusive. We conclude the
discussion with an illustration of these rare events.

Fig. 12 presents a realization of 1000 nodes with 𝑟𝑛 =
1.6𝑟∗𝑛 dispersed in a square area. Only four nodes are non-
monotonic, i.e., all shortest-hop paths to these nodes approach
them from nodes farther away from the source. The figure
presents a shortest-hop path connecting each non-monotonic
node to the source. For this setup, each node sees on the
average 𝑛

2𝜋𝑟
2
𝑛 ∼ 8 nodes in the half-neighborhood that is

closer to the source. However, notice that the corresponding
half-neighborhood of each non-monotonic node is scarcely
populated. Such low density in the neighborhood seems to be
the primary reason why shortest-hop paths wind around these
node to connect to them. However, in large deployments with
appropriately chosen communication radii, Thm. 2 guarantees
a healthy occupancy of Θ(log𝑛) nodes in the neighborhood
of each node, thereby suggesting that these events are an
aberration from the norm.
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