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Abstract—In this paper, we propose a scheme to construct low-
density parity-check (LDPC) codes that are suitable for unequal
error protection (UEP). We derive density evolution (DE) formulas
for the proposed unequal error protecting LDPC ensembles over
the binary erasure channel (BEC). Using the DE formulas, we op-
timize the codes. For the finite-length cases, we compare our codes
with some other LDPC codes, the time-sharing method, and a pre-
vious work on UEP using LDPC codes. Simulation results indicate
the superiority of the proposed design methodology for UEP.

Index Terms—Low-density parity-check (LDPC) codes, unequal
density evolution (UDE), unequal error protection (UEP).

1. INTRODUCTION

OST error-correcting codes are designed for the equal
Merror protection (EEP) of all data. However, on several
important applications, certain parts of the information may
need a higher level of protection against error than other parts.
For example, in optical networks, errors that occur in the header
bits of a packet cause more serious damage to the subsequent
process than errors within the payload. Since repeat-request
protocols are not an option for error-free data delivery in optical
networks (because of their multihop nature and high-speed
data transmission requirement), we are left with three options.
First, EEP codes with high protection for the entire packet
could be used. This is not efficient, since EEP codes provide far
more protection than is necessary by adding excessive redun-
dancy. Second, two different codes could be used (time-sharing
method). This approach is not prudent, since the header is very
short and the performance of codes is poor for short lengths.
Finally, a more interesting and challenging solution is the
construction of a single code that induces a selective protection
property known as unequal error protection (UEP).

Masnick and Wolf were the first to introduce UEP codes
[1]. Later, other UEP codes were designed using different ap-
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proaches, e.g., [2] and [3]. However, there has been little work
concerning the design of low-density parity-check (LDPC)
codes with the UEP property. In [4], the authors proposed
UEP-LDPC codes that are based on cyclic difference families
(CDFs). In [5], we investigated the notion of UEP-LDPC codes
based on irregular random graphs with the degree distributions
that are optimized by unequal density evolution (UDE) for-
mulas over the binary erasure channel (BEC). In this letter, we
extend the discussion.

Throughout the letter, we assume the following terminology.
An LDPC ensemble can be defined to be the set of bipartite
Tanner graphs with degree distribution pairs A(z) = Y, A\;z~!
and p(z) = Y, pix'~1, where \; (p;) is the fraction of edges
connected to variable (check) nodes of degree ¢. The codes re-
ported in the letter are randomly constructed following the de-
scriptions of [6] and [7].

The letter is organized as follows. In Section II, a design
method for UEP using LDPC codes is explained, and the sim-
ulation results are given. Efficient encoding is also explored for
the proposed codes. Sections III and IV compare our method
with time-sharing and CDF methods, respectively. Finally, we
conclude the paper in Section V.

II. UEP UsING LDPC CODES

Up until now, different schemes for designing capacity
achieving (CA) LDPC codes over the BEC have been devised,
e.g., [8]. These schemes are based on designing codes of rate
R with the threshold channel-erasure probability (**) as close
as possible to 1 — R. When the channel-erasure probability is
less than *”, the average bit-error rate (BER) (the probability
that a bit is not recovered after the decoding stops) goes to zero
when long enough code lengths and a large enough number
of decoding iterations are considered. Therefore, CA codes
are superior to the UEP codes asymptotically, as they provide
small enough error rates for all data. However, short-to-mod-
erate-length codes are preferable in practice. For these lengths,
UEP codes are desirable. In the proposed UEP design, we
neither optimize the codes based on £ nor use the average
BER of all data in our analysis. Instead, we divide the codeword
into different groups, and investigate the average BER for each
group. The codes are optimized such that some information bits
have lower BER than the other bits.

Throughout the letter, we are only concerned with the per-
formance of information bits, thus UEP for information bits is
considered. Therefore, we need to determine the positions of
the information bits in the codeword. For an (n, k) LDPC code
that is defined by a parity-check matrix H, not every arbitrary
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Fig. 1. Tanner graph of the proposed ensemble for the UEP property.

collection of k bits in the codeword can correspond to the infor-
mation bits. The following should be satisfied by H.

Fact I: Letan (n — k) x n matrix H = [hy, ha, ..., h,] be
the parity-check matrix corresponding to an (n, k) linear code.
To have [i1, 12, . .., 4] as the positions of the information bits
in the codeword, matrix Hp = H \ H; must be full rank, where
HI = [hi17hi27 reey hu]

Proof: Let us define X = (z1,%2,...,2,), X1 =
(@i, ---s 2 ), and Xp = X \ X. Then, X is a valid code-
word if and only if Hr X{ + Hp X}, = 0. Using this equation,
we can find parity bits (PB) Xp as a function of information
bits X7 if and only if Hp is full rank. [ |

In this letter, the information bits are divided into two groups
with two levels of importance. One group consists of the
more important bits (MIB) that need higher protection. The
other group contains the less important bits (LIB). Next, we
describe how to design UEP-LDPC codes. For simplicity, we
use asymptotic tools for designing the UEP codes. However,
the results are used in constructing finite-length codes.

A. Problem Statement

Suppose we want to transmit £ information bits with two
levels of importance over an erasure channel with erasure prob-
ability . For this, we want to design an (n, k) UEP code having
rate R. Let k,,, = ak (where 0 < a < 1) be the number of MIB
and k; = (1 — a)k be the number of LIB. Let m = n — k be
the number of PB.

Next, a method for the UEP is proposed. In this method, we
consider the conventional bipartite Tanner graph with n variable
nodes and m check nodes. For the simplicity of design, we as-
sume having partially regular ensembles. By partially regular,
we mean that all the MIB, LIB, and PB have the same degrees
dp, di, and dp, respectively. Further, all check nodes have the
same degree d... Fig. 1 shows the Tanner graph of this ensemble.
Let H = [H,,|H;|H,] denote the corresponding parity-check
matrix of this graph, where H,,, H;, and H), are submatrices
that correspond to the MIB, LIB, and PB, respectively. By Fact
1, we conclude that the assumption of separating information
bits and PB as specified above is valid if and only if H), is full
rank. Next, we derive DE formulas for the proposed partially
regular ensemble.

B. UEP DE

Let us consider the standard iterative decoding algorithm for
the BEC. To achieve UEP with a significant gap among the dif-
ferent protection levels, we modify the DE formulas introduced
in [9]. In our formulation, three parameters m;, [;, and p; are
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introduced. These parameters denote the expected fractions of
the erasure messages at the sth iteration that are passed from the
variable nodes that correspond to the MIB, LIB, and PB, respec-
tively. Furthermore, let ¢; denote the probability that an erasure
message is passed from the check nodes to the variable nodes at
the +th iteration. Then, the UDE formulas are given as

mo =lg=po=¢ (D
_ _ d,—1
mig1 =mogt™ Y ligr = log" ™, pig1 = pog;” )
do—1
g =1— (1= Xg,,m; — Ag,li — Aa, pi) 3)

where \g, , Ag,, and )y, are the fractions of the edges that are
connected to the MIB, LIB, and PB, respectively. These parame-
ters can be obtained by A\q,, = aRd,,/E, A\g, = (1—a)Rd,/E,
and \q, = (1—R)d,/E,inwhich E = aRd,, + (1 —a)Rd; +
(1 — R)d,.

The following lemma points out the UEP property of the pro-
posed ensemble.

Lemma 1: Let € be the erasure probability of a BEC and
Bie 2 (li+1,/miy1.c) be the UEP gain at the ith decoding it-
eration. Then, 3; . increases when the erasure probability of the
channel, €, decreases. Moreover, f3; . is an increasing function
of the number of iterations 2.

Proof: Using (2), we have §; . = (l/qm)dm*dl. Since
dn, > d;, we need to show that ¢; . is an increasing function
of €. This can be proven by induction. Assume €5 > 1. From
(3), we have qp.. = 1 — (1 — )% ~1. This implies that go ., >
qo,e, - Now we assume that ¢;_1 ., > ¢i—1,,. From (2), we
have m; ., > Mi e, lic, > lic,, and p; ., > p; o, . Using (3),
we conclude that g; ., > ¢;.,. This proves the first part of the
lemma.

To prove the second part, we must show that g; . is a de-
creasing function of 7. This can be done by induction on :. First,
note that gqp . < 1. From (3), we have ¢; . < qo,.. Now assume
that Gie < qi—1,e <...< q1,e < qo,e < 1. Let

1

d;—1 dp_
+eXd, g -

A —
Fgie) 2 eda, qin ™"+ eda, g
We have f(¢;..) < 1 and

Git1,e — Gie = (1= f(Qifl,a>)d671 - (1= f(qi@))dCil
= (f(4ie) — f(gim1e)) X K

in which K > 0. Using (4), the value of f(g; ) — f(gi—1,c) can
be seen to be negative since ¢; - < g;—1,. Therefore, we have
Qi+1,e < ¢i,e. This completes the proof. [ |

Using the UDE formulas, the asymptotic behavior of a code
for a given degree distribution can be estimated.! Moreover, we
can optimize the degrees such that we have low error rates for
MIB while keeping the overall performance comparable with
other codes. For a given R and «, we need to find optimal values
ford,,, d;, d,, and d.. However, we have one equality constraint
that is imposed by the edges as

“

aRdm + (1 — a)Rd; = (1 — R)(de — d,). (5

! An alternative way to obtain the performance of a code over the BEC is by
determining the stopping sets’ characteristics. Such an approach is more com-
plicated, especially for the UEP case. However, the results of two approaches
will be consistent asymptotically.
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TABLE I
DEGREE DISTRIBUTIONS, M5, l25, AND p2s OF SOME OPTIMIZED UEP-LDPC
CODES OF RATE 1/2 AND o« = (0.1 FOUND BY THE PROPOSED METHOD

[ Code | dm [ di [ dp [ de | mas | las | s |
1 23 3 2 7 2.18e-6 1.48e-1 | 2.58e-1
2 24 | 4 2 8 | 2.31e-12 | 1.52e-2 | 1.45¢-1

Therefore, we have three independent variables to optimize. We
considered d. as the dependent variable. By assuming a max-
imum value for the degrees (d,ax) and considering d,,, > d; >
d,, we can easily search through all the possible values for the
degrees and select the ones that result in very low error rates for
MIB. The cost function is considered as m (for some large in-
teger I).

Example: Assume we want to design a UEP code with o =
0.1 and rate 1/2. By setting dynax = 25, ¢ = 0.45,2and I = 25,
we minimized the cost function m ;. Table I shows the degrees,
my, Iy, and py for two optimized codes.

As it is shown in the table, asymptotically, the performance
gaps between the BERs of MIB and the rest of the codeword
bits are several orders of magnitude for 25 decoding iterations.
Increasing the number of iterations results in even larger gaps.

To measure the performance of the proposed codes for the fi-
nite-length case, we found the BER versus ¢ for Code 1 (z—:th =
0.455) when the length of the code is n = 4000 [Fig. 2(a)].
Two other codes were chosen for comparison with our code:
the regular (3,6) (¢** = 0.429) and a BEC-optimized irregular
code, referred to as Code A, found from [10] by setting the max-
imum allowable degree to 25. The degree distribution of Code
A3is given by A\(z) = 0.249765x + 0.24716422 + 0.1480032°
+0.0033269z° + 0.3517412'° and p(z) = 27 with et =
0.489. To have a fair comparison, we showed the performance of
k., = 200 highest-degree nodes (as MIB) and rest of the nodes
(LIB and PB) separately for Code A. As we can see in Fig. 2(a),
there is a large gap between the BERs of the MIB and LIB in
the proposed code.* This gap is at least two orders of magnitude,
and it increases when the channel erasure probability decreases
as in Lemma 1 for the asymptotic case. Moreover, the perfor-
mance of the MIB in the proposed code is always better than
the performance of the MIB in the two other codes. In addition,
the error floor in the LIB and PB are lower in the proposed code
in comparison with Code A. We also note that the performance
of the proposed code is far better than the performance of the
regular (3,6) for ¢ > 0.3921. For smaller ¢’s, the performance
of the regular (3,6) beats the performance of LIB in the pro-
posed method. This is because of the well-known result that the
regular (3,6) does not show an error floor, unlike the irregular
codes.

2If we optimize a code for a large value of &, asymptotically, the code will have
a good performance for large £’s. On the other hand, if we optimize a code for
a small value of ¢, asymptotically, the code will have a good performance in the
error-floor region.

3We need to make a subtle change to the distribution of finite-length codes.
For example, we used A(2) = 0.249625x + 0.247522 + 0.1481252° +
0.003525 40.3512521° and A(z) = 0.2492 + 0.247522 4 0.152° +
0.003525 + 0.352'9, for n = 4000 and n = 1000, respectively. In both
cases, €' = 0.489.

4The BER for MIB is found by averaging over the fraction of the bits in MIB
that has not been recovered when decoding stops. Similarly, BERs of LIB and
PB can be obtained.
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Fig. 2. (a) Comparison of the BERs of Code 1 with Code A and the regular

(3,6). All codes are of length 4000 and rate 1/2. (b) Recovery convergence rate
of MIB and LIB Code 1 at ¢ = 0.42.

However, we note that the performance of MIB in the proposed
code is superior to the performance of the regular (3,6).

It is worth noting that not only will MIB be retrieved with
much less error than LIB, but also MIB converges in fewer de-
coding iterations than LIB. This can be seen in Fig. 2(b) for
Code 1 at e = 0.42. This is useful when fast decoding for MIB
is needed.

We also illustrated the performance of Code 1 when n =
1000 (Fig. 3). Again, we compared the proposed code with the
regular (3,6) and Code A of lengths 1000. As we can see, the
proposed code is superior to the regular (3,6) in the shown range.
Moreover, although the performances of LIB and PB are close
in Code 1 and Code A, the performance of MIB is far better than
the performance of the 50 highest-degree nodes in Code A.

C. Efficient Encoding

As we can see in Table I, the degree-distribution optimiza-
tion has resulted in d,, = 2. We also observed the same result for
most of the other UEP code designs. In fact, we exploit this prop-
erty of the parity nodes to simplify the encoding of the proposed
codes as follows. Since d,, = 2, all columns of H,, have weight
two. However, given that I}, is m X m and full rank by Fact 1,
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Fig. 4. Efficient encoding for the proposed UEP codes having d,, = 2.

no more than m — 1 columns of weight two are allowed. To over-
come this problem, we use the method proposed in [11]. One of
the weight-two columns is replaced with a weight-one column.
This does not have an important effect on the performance of the
code, but ensures that I}, is full rank. It can be shown that I, is
either a dual-diagonal matrix () or a column permutation of )
[11]. In other words, H, = Q1I, where 1l is a random permuta-
tion matrix. A systematic generator matrix for the parity-check
matrix H = [H,,|H;|QII] is given by G = [I|HF Q~"TI], in
which Hy = [H,,,|H;]. The matrix Q7 corresponds to a differ-
ential encoder whose transfer function is 1/(1 € D) [11]. The
encoder for these codes is depicted in Fig. 4. Thus, these codes
are a generalized form of the repeat-accumulate (RA) codes for
which II is equal to the identity matrix.

III. COMPARISON WITH THE TIME-SHARING METHOD

One approach to UEP is the time-sharing method. In this
method, several codes of different rates are used for different
parts of the data. This method increases the complexity of the
system. Additionally, since the MIB is usually very short, the
code length would be short. We expect that this causes perfor-
mance degradation. The following simulation confirms that the
time-sharing technique does not perform as well as the proposed
method. Suppose we want two levels of protection for a message
whose « fraction is MIB. In the first method, a UEP code of rate
R is considered. Alternatively, we can design two codes 1'S,,
and T'S; with rates R,,, and R; for MIB and LIB, respectively.
By fixing the total number of the PB in both methods, we get
(a/Rm)+ ((1 — «)/R;) = 1/R. For a given R and «, we can
have different pairs of R,, and R;, where choosing the best pair
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Fig. 5. Comparison of the proposed UEP method with the time-sharing
method.

can be done by trial and error. Fig. 5 compares the performance
of UEP Code 1 of length 4000, R = 0.5, and o = 0.1 with
the time-sharing method having R; = 0.52 and R,, = 0.37.
The codes that are used in the time-sharing method are the best
codes that we find from [10] for the given rates. They have the
following degree distributions:

Ars, (x) =0.299488x + 0.1444262% 4 0.01599222°
+0.1656962* + 0.1752882”

+0.1343212%* 4+ 0.0647887x2°

prs(z) =z’

Ars, () = 0.249839z + 0.1289262% + 0.113474x*
+ 0.0514865z° 4 0.07675922:1°
+0.0636197z + 0.1426412%7 + 0.1742032°°
prs,, (r) =0.72° + 0.327

with e = 0.474 and €% = 0.628, respectively. To have better
performance for MIB and LIB in the time-sharing method,
we assume that MIB and LIB correspond to the higher degree
variable nodes in T'S,, and T'S, respectively. Fig. 5 indicates
that the proposed UEP scheme outperforms the time-sharing
scheme for ¢ < 0.446. For example, at ¢ = 0.42, the MIB
(LIB) in Code 1 has more than two orders of magnitude (about
one order of magnitude) less BER in comparison with the case
where T'S,,,(TS;) is used. Further, the superiority of the pro-
posed method versus time-sharing increases when the channel
erasure probability decreases.

IV. CoMPARISON WITH THE PREVIOUS UEP-LDPC CODES

In [4], authors proposed UEP-LDPC codes constructed based
on the orbits of CDFs. We note that the codes have very high
protection for some codeword bits. This approach is desirable
in applications such as holographic memory systems, where the
noise has a nonuniform pattern. Therefore, different protection
levels for codeword bits are provided to achieve uniform BER
after the decoding. In applications where UEP for information
bits is needed, this approach may not be efficient. Specifically, it
can be shown that the most highly protected codeword bits in [4]
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Fig. 6. Structure of the parity-check matrix constructed using the CDF method.
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Fig.7. Comparison of the codes designed by the CDF method and the proposed
method.

are not the information bits. This is because of the parity-check
matrix structure that is used. As an example, a code of length
n = 553 and R = .57 would have an H matrix of the form de-
picted in Fig. 6, in which H; is a 316x 79 submatrix, Hy and Hs
are 158x79, and Hy, Hs, Hg, and H7 are 79 x79 submatrices.
Note that all elements in the gray part of H are zeros. More-
over, the bits corresponding to H; are the most protected bits.
We claim that the codeword bits corresponding to H; are the PB.
Otherwise, we must have rank (H \ H;) = n(1 — R) = 237,
which is impossible. Therefore, the most highly protected bits
are the PB. By a similar argument, it is shown that Hs and Hj
cannot together correspond to the information bits. Therefore, a
possible choice for information bits can correspond to Hy, Hy,
and H5. For comparison, we also give a code based on our pro-
posed method having length n = 555, R = 0.6,d,,, = 23,d; =
3,d, = 2,d. = 11, and o = 0.15. It should be mentioned that
in this example, the channel is AWGN. We used the same code
that we designed using DE formulas over the BEC. Fig. 7 shows
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the BER versus SNR for the information bits. Note that BER
of the PB was not shown in this figure. The number over each
graph represents the number of information bits in each part.
It is concluded that although our proposed code has a slightly
higher rate, it has much better performance than the code in [4].

V. CONCLUSION

This letter investigated the design of high-performance UEP-
LDPC codes over the BEC. A method based on partially reg-
ular random graphs was proposed. We derived UDE formulas
over the BEC to optimize the codes for the UEP property. Using
the DE formulas, we found codes with good performance that
also have a significant UEP property. Simulation results show
that we achieve much higher protection for the MIB in compar-
ison with the LIB. Our results were compared with a BEC-opti-
mized irregular code and the regular (3,6) code for lengths 4000
and 1000. We also compared our method with the time-sharing
method and the previous UEP-LDPC method. The results sug-
gest the superiority of the proposed method versus the afore-
mentioned methods for the UEP.
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