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New Results on Unequal Error Protection
Using LDPC Codes
Nazanin Rahnavard and Faramarz Fekri

Abstract— In this letter, we propose a new scheme to con-
struct low-density parity-check (LDPC) codes that are suitable
for unequal error protection (UEP). We derive UEP density
evolution (UDE) formulas for the proposed ensemble over the
binary erasure channel (BEC). Using the UDE formulas, high
performance UEP codes can be found. Simulation results depict
an improvement in the bit error rate of more important bits in
comparison with previous results on UEP-LDPC codes.

Index Terms— Unequal error protection, low-density parity-
check codes, density evolution.

I. I NTRODUCTION

UNEQUAL Error Protection (UEP) property is very desir-
able for applications where different bits have different

significance. The first UEP codes were proposed by Masnick
and Wolf [1]. Later, other UEP design methodologies were
developed, e.g., [2]. Because of the outstanding performance
of LDPC codes, it is desirable to have unequal error protec-
tion using LDPC codes. In [3], authors proposed a scheme
for UEP-LDPC codes. The method in [3] is based on the
conventional bipartite Tanner graph. Here, we propose an-
other scheme based on combining two Tanner graphs. We
derive density evolution formulas for this ensemble over the
BEC channel. Simulation results show that we can achieve
improved performance by the proposed method.

The paper is organized as follows. In Section II, a new
scheme for designing UEP codes is given. Section III de-
scribes an efficient encoding scheme for a special class of the
proposed codes. Finally, we conclude the paper in Section IV.

II. A N EW SCHEME FORUEP

Suppose we want to transmitk information bits with two
levels of importance over a BEC with erasure probabilityε.
To do this, we want to design an(n, k) UEP-LDPC codeC
having rateR = k/n. Let kM = αk (0 < α < 1) be the
number of more important bits (MIB) andkL = (1− α)k be
the number of less important bits (LIB). Letm = n − k be
the number of parity bits (PB). Let us defineG(n,m) as the
Tanner graph corresponding toC with n variable nodes and
m check nodes. LetH denote anm× n binary parity-check
matrix corresponding toG(n,m). We assume thatH is full
rank.

Before explaining our design criteria, it is good to provide
some insight as to how an LDPC code can have different error
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Fig. 1. The Tanner graph of the ensemble in [3] for the UEP property.
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Fig. 2. The Tanner graph of the proposed ensemble.

protection levels for different bits. It is known that it is best
to have high degrees for variable nodes. This is because the
more information a variable node receives from its adjacent
check nodes, the more accurately it can judge about its correct
value. The previous scheme on UEP-LDPC codes [3] is based
on having different degrees for MIB, LIB, and PB. Fig. 1
shows the ensemble proposed in [3], where the authors derived
density evolution for the UEP case. It was concluded that MIB
have larger degrees than LIB and there is a large gap among
the BERs of MIB and LIB.

To further reduce the error rates for the MIB, we propose
another scheme. In this scheme, we combine two Tanner
graphs. The first Tanner graph corresponds to a high-rate
LDPC code that is for protecting MIB. The second graph
is for protecting all the data. The first Tanner graph has the
role of determining the values of those bits in MIB that the
second graph failed to determine. Therefore, the error rate
for MIB can be reduced. LetG1 = G(n1,m1) and G2 =
G(n,m2) denote the first and second graph, respectively. Here
m1 = γm and m2 = (1 − γ)m for some 0 < γ < 1.
The proposed ensemble is depicted in Fig. 2. Let us call the
proposed ensemble asGc. The firstn1 variable nodes inGc,
are protected by bothG1 andG2. It should be noted that not
all of thesen1 bits can be taken as information bits. In the
following lemma we show that we haven1−m1 information
bits in this part of the codeword.

Lemma 1:Consider two Tanner graphsG1 = G(n1,m1)
andG2 = G(n,m2) that are combined to form an ensemble
as in Fig. 2. Then,n1 variable nodes that are common in both
graphs containn1 −m1 information bits.

Proof: Let H1 andH2 = [H21|H22] denotem1×n1 and
m2 × n parity-check matrices corresponding toG1 and G2,
respectively. It is easy to see that the parity-check matrix of
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the combined code is given by

H =
(

H1 0
H21 H22

)
.

SinceH is full rank, we haveH1 andH22 are also full rank.
SinceH22 is full rank, we conclude that all the firstn1 bits
can potentially be information bits (their values can be set
independently). However, sinceH1 is also full rank with rank
m1, we conclude that onlyn1 −m1 bits of the firstn1 bits
are information bits and the values of the otherm1 bits are
determined by the values of then1−m1 information bits. This
completes the proof.

We consider all of thesen1 − m1 bits as MIB, i.e.,
kM = n1 − m1. To impose different protection levels for
MIB and LIB, it is necessary to know the positions of MIB
and LIB in Gc. The following lemma states necessary and
sufficient conditions for arranging MIB, LIB, and parity bits
as in Fig. 2. The corresponding codeword is in the form
of c = [MIB|P1|LIB|P2], where the parity bits have been
divided into two partsP1 andP2.

Lemma 2:Let H1 = [A|Hp1] and H2 = [B|C|E|Hp2]
denote the parity-check matrices that correspond toG1 and
G2, respectively. HereA, Hp1, B, C, E, andHp2 are matrices
of sizem1×kM , m1×m1, m2×kM , m2×m1,m2×kL, and
m2 × m2, respectively. The assumption of separating MIB,
LIB, and PB as shown in Fig. 2 is valid if and only ifHp1

andHp2 are full rank.
Proof: Let us defineHp as

Hp =
(

Hp1 0
C Hp2

)
.

The columns ofHp correspond to the PB if and only ifHp

is full rank. This is possible if and only ifHp1 andHp2 are
full rank.

Next we derive density evolution formulas for the proposed
ensemble.

A. UEP Density Evolution (UDE)

Here, we derive the UDE formulas for the proposed ensem-
ble. See Fig. 2 for the definitions ofdM1, dM2, dp11, dp12,
dL, dp2, dc1, anddc2. Let M1,i andp11,i denote the expected
fractions of erasure messages that are received by the check
nodes inG1 from the variable nodes that correspond to MIB
andP1, respectively. LetM2,i, p12,i, Li, andp2,i denote the
expected fractions of erasure messages that are received by the
check nodes inG2 from the variable nodes that correspond to
MIB, P1, LIB, and P2, respectively. LetMi and p1,i denote
the expected fractions of erasure messages that are sent to an
incident edge from the variable nodes that correspond to MIB
and P1, respectively. Let alsoqi (ri) denote the probability
that an erasure message is passed from the check nodes to
the variable nodes inG1 (G2). Note that subscripti is the
iteration number. The UDE formulas fori ≥ 0 are given by

M1,0 = M2,0 = L0 = p11,0 = p12,0 = ε,

M1,i+1 = εqdM1−1
i rdM2

i , M2,i+1 = εrdM2−1
i qdM1

i ,

p11,i+1 = εq
dp11−1
i r

dp12
i , p12,i+1 = εr

dp12−1
i q

dp11
i ,

Li+1 = εrdL−1
i , p2,i+1 = εr

dp2−1
i ,

Mi+1 =
dM1M1,i+1 + dM2M2,i+1

dM1 + dM2
,

p1,i+1 =
dp11p11,i+1 + dp12p12,i+1

dp11 + dp12
,

qi = 1− (1− λd1M1,i − λd2p11,i)dc1−1,

ri = 1− (1− λd3M2,i − λd4p12,i − λd5Li − λd6p2,i)dc2−1,

whereλd1 , λd2 are the fractions of edges that are connected
to the MIB andP1 in G1, respectively. Furthermore,λd3 , λd4 ,
λd5 , andλd6 are the fraction of edges that are connected to the
MIB, P1, LIB, and P2 in G2, respectively. These parameters
are obtained byλd1 = αRdM1

T1
, λd2 = γ(1−R)dp11

T1
, λd3 =

αRdM2
T2

, λd4 = γ(1−R)dp12
T2

, λd5 = (1−α)RdL

T2
, and λd6 =

(1−γ)(1−R)dp2
T2

, in which T1 = αRdM1 + γ(1 − R)dp11 and
T2 = αRdM2+γ(1−R)dp12+(1−α)RdL+(1−γ)(1−R)dp2.

Using the UDE formulas, the asymptotic behavior of a code
with a given degree distribution can be estimated. Moreover,
we can optimize the degrees so that we have low error rates
for MIB while keeping the overall performance comparable
to other codes. For a givenR andα, optimal values fordM1,
dM2, dp11, dp12, dL, dp2, dc1, dc2, andγ need to be found.
However, we have two equality constraints imposed by edge
constraints. These constraints are given by

αRdM1 = γ(1−R)(dc1 − dp11),

αRdM2 + γ(1−R)dp12 + (1− α)RdL = (1− γ)(1−R)(dc2 − dp2).

Therefore, we require to optimize seven independent variables.
We considereddc2 and γ as dependent variables. By setting
some upper bounds for the degrees, we can search through all
the possible values for degrees and select the ones that result in
very low error rates for MIB. The cost function is considered
asMI (for some large integerI for which MI is very close to
its steady state value). It should be noted that the rate of the
code corresponding toG1 is given byRp = αR

αR+γ(1−R) . For
a fixedR andα, the larger isγ, the smaller areRp and BER
for MIB. On the other hand, we need to keepRp large such
that the performance of LIB remains acceptable. Therefore,
we impose a lower bound on the rateRp. Note that since the
UDE formulas represent the asymptotic performance, every
code obtained by the UDE formulas would not be necessarily
optimal for finite-length codes. Therefore, we further refine
the solutions for finite-length codes by choosing the one that
has highest performance using iterative decoding.

B. Simulation Results

Consider the problem of designing a rate1/2 UEP code
with α = 0.1. Let us assume the following search space:
dM1, dM2, dL ≤ 25, dp11, dp12, dp2 ≤ 5, dc1, dc2 ≤ 15, and
Rp ≥ 0.8. Using the UDE formulas, we optimize the codes.
For example, we picked a code that results inMI = 0 and
LI = 7.9× 10−31 for ε = 0.45 andI = 1000 iterations. This
code also results inMI = 2.85 × 10−26 and LI = 2.49 ×
10−12 for ε = 0.45225. Table I summarizes the degrees for
the optimized code.

For the finite-length case, we found the BERs versus the
channel erasure probability for this code when the code length
is n = 4000 (kM = 200, kL = 1800, m1 = 28, m2 = 1972)
and the maximum number of decoding iterations is200. Fig. 3
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TABLE I

DEGREE DISTRIBUTIONS OF THE PROPOSED RATE1/2 UEP-LDPCCODE.

dM1 dM2 dp11 dp12 dL dp2 dc1 dc2 γ

1 22 2 2 3 2 9 7 0.0143

shows the performance of the proposed code compared with
the previous code presented in [3] withdM = 23, dL = 3,
dp = 2, anddc = 7. Fig. 3 shows that the performance of MIB
has improved by about one order of magnitude. On the other
hand, the performance of LIB has degraded slightly for large
ε, although LIB does not show an error floor as opposed to the
code in [3]. We also included the BERs forP1 andP2 in the
figure. AlthoughP1 has a total degree which is much smaller
than that of MIB, the BER performance ofP1 and MIB are
close. This is because the only neighbors of the check nodes
in G1 are MIB andP1. Hence, certain messages from MIB
help P1 to be determined.

We also illustrated the performance of the proposed code
when n = 1000 (kM = 50, kL = 450, m1 = 7, m2 =
493) in Fig. 4. For comparison, we depicted the performance
of the code presented in [3] and a BEC-optimized irregular
code, referred to as Code1, found from [4] by setting the
maximum allowable degree to25. The degree distribution for
Code1 is given byλ(x) = 0.24976x+0.24716x2+0.148x5+
0.003326x6 + 0.35174x19 and ρ(x) = x7. We showed the
performance ofkM = 50 highest degree nodes (as MIB) and
rest of the nodes separately for Code1. We note that the
performance of MIB in the proposed code is by far (three
orders of magnitude forε = 0.38) better than the performance
of MIB in Code 1.

III. E FFICIENT ENCODING

Here we present an efficient encoding scheme for the case
dp11 = 2 and dp2 = 2, which happens in many optimized
cases.Hp1 and Hp2 are full rank matrices by Lemma 2. It
can be seen easily thatHp1 (Hp2) is either anm1 × m1

(m2 × m2) dual-diagonal matrixQ1 (Q2) or its column
permutation. LetHp1 = Q1Π1 and Hp2 = Q2Π2 for some
random permutation matricesΠ1 and Π2. A systematic
generator matrix for the parity-check matrix

H =

(
A Q1Π1 0 0
B C E Q2Π2

)
,

is given by

G =


IkM×kM

AT Q
−T
1 Π1 0 (BT + AT Q

−T
1 Π1CT )Q

−T
2 Π2

0 0 IkL×kL
ET Q

−T
2 Π2


 .

It can be easily verified thatGHT = 0. The matrix Q−T
1

(Q−T
2 ) corresponds to a differential encoder whose transfer

function is 1
1

⊕
D [5]. We assumed that the information bits

areI = [MIB|LIB], and therefore codewords are in the form
of c = [MIB|P1|LIB|P2].

IV. CONCLUSION

A new design method for high performance UEP-LDPC
codes was investigated. We proposed an ensemble that is a
combination of two conventional bipartite graphs to improve
the performance of more important bits (MIB). We derived
unequal density evolution (UDE) formulas over the BEC
for this ensemble. Using the UDE formulas, we are able to
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Fig. 3. Comparison between the proposed method and the method in [3].
The codes are of lengthn = 4000, rate1/2, andα = 0.1.
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Fig. 4. Comparison between the proposed method, the method in [3], and
Code1. All the codes are of lengthn = 1000 and rate1/2.

optimize the codes. We compared our results with the previous
results on UEP-LDPC code presented in [3] for two lengths
n = 1000 andn = 4000. We noted that the proposed method
significantly decreased the BERs for the MIB. Moreover, the
performance of the code for less important bits improved
for small channel erasure probabilities. Forn = 1000, we
also compared the proposed code with a BEC-optimized code
by setting a subset of the highest degree nodes with the
corresponding size as MIB. The results showed the superiority
of our code. Finally, an efficient encoding scheme for a special
case of the proposed method was developed.
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