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New Results on Unequal Error Protection
Using LDPC Codes

Nazanin Rahnavard and Faramarz Fekri

Abstract—In this letter, we propose a new scheme to con- O D.rf’.n oo

struct low-density parity-check (LDPC) codes that are suitable %dc

for unequal error protection (UEP). We derive UEP density

evolution (UDE) formulas for the proposed ensemble over the

binary erasure channel (BEC). Using the UDE formulas, high %«4 g(dL ydp

performance UEP codes can be found. Simulation results depict -0 O " oo N .'rh'. o0
. >

an improvement in the bit error rate of more important bits in . .
comparison with previous results on UEP-LDPC codes. Fig. 1. The Tanner graph of the ensemble in [3] for the UEP property.
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NEQUAL Error Protection (UEP) property is very desir- S NI TS - by = " —

able for applications where different bits have different "-\__*Aééf.m 15 s v
significance. The first UEP codes were proposed by Masnick N 3?(% /
and Wolf [1]. Later, other UEP design methodologies were o @ ooodd

developed, e.g., [2]. Because of the outstanding performangg > The Tanner graph of the proposed ensemble.
of LDPC codes, it is desirable to have unequal error protec-

tion using LDPC codes. In [3], authors proposed a schemgstection levels for different bits. It is known that it is best
for UEP-LDPC codes. The method in [3] is based on thg have high degrees for variable nodes. This is because the
conventional bipartite Tanner graph. Here, we propose afiyre information a variable node receives from its adjacent
other scheme based on combining two Tanner graphs. Wesck nodes, the more accurately it can judge about its correct
derive density evolution formulas for this ensemble over thg,jue. The previous scheme on UEP-LDPC codes [3] is based
BEC channel. Simulation results show that we can achieyg having different degrees for MIB, LIB, and PB. Fig. 1
improved performance by the proposed method. shows the ensemble proposed in [3], where the authors derived
The paper is organized as follows. In Section II, @ néyensity evolution for the UEP case. It was concluded that MIB
scheme for designing UEP codes is given. Section lll dgaye |arger degrees than LIB and there is a large gap among
scribes an efficient encoding scheme for a special class of {je BERs of MIB and LIB.
proposed codes. Finally, we conclude the paper in Section IV.1q further reduce the error rates for the MIB, we propose
another scheme. In this scheme, we combine two Tanner
Il. ANEwW SCHEME FORUEP graphs. The first Tanner graph corresponds to a high-rate

Suppose we want to transmiitinformation bits with two LDPC code that is for protecting MIB. The second graph
levels of importance over a BEC with erasure probabitity is for protecting all the data. The first Tanner graph has the
To do this, we want to design am, k) UEP-LDPC codeC role of determining the values of those bits in MIB that the
having rateR = k/n. Let kyy = ak (0 < a < 1) be the second graph failed to determine. Therefore, the error rate
number of more important bits (MIB) ank, = (1 — a)k be for MIB can be reduced. Let:; = G(ni,m1) and Gy =
the number of less important bits (LIB). Let = n — k be G(n, m2) denote the first and second graph, respectively. Here
the number of parity bits (PB). Let us defit¥n,m) as the m1 = ym andmy = (1 — y)m for some0 < v < 1.
Tanner graph corresponding @with n variable nodes and The proposed ensemble is depicted in Fig. 2. Let us call the
m check nodes. Lef denote anm x n binary parity-check Proposed ensemble @s.. The firstn, variable nodes irG.,
matrix corresponding t@(n, m). We assume thafl is full ~are protected by bott¥; andG>. It should be noted that not
rank. all of thesen; bits can be taken as information bits. In the

Before explaining our design criteria, it is good to providéollowing lemma we show that we have —m; information
some insight as to how an LDPC code can have different erfdjs in this part of the codeword.

Lemma 1:Consider two Tanner graphs,; = G(ni,m)
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dyii My i1 + dara Mo i1

the combined code is given by My =
o 0 dan + dare
H— ( 1 ) ) o dp11P11,i+1 + dp12P12,i41
Hy1  Hoo P1i+1 dp11 + dp12
Since H is full rank, we havel; and Hy, are also full rank. Gi=1—(1=Ag, My; — Agypr1.i)% 1,

Since Hs;, is full rank, we conclude that all the first; bits
can potentially be information bits (their values can be set =1 — (1 — Mgz Ma; — Aa,pi2; — Aas Li — Aagp2,i)%2 7,
independently). However, sindé; is also full rank with rank
m1, we conclude that only.; — my bits of the firstn; bits
are information bits and the values of the other bits are
determined by the values of thg —m; information bits. This
completes the proof. [ ]
We consider all of thesei; — m; bits as MIB, i.e.,
kv = mi — ma. To impose different protection levels foraRdM2 Aa, = m Ads = %, and \g; =
MIB and LIB, it is necessary to know the positions of MIBM, in Wh|ch T, = aRdy + 7(1 — R)d,11 and
and LIB in G.. The following lemma states necessary antd, = aRdMQﬂ(l R)dpi2+(1—a)Rdr+(1—7)(1—R)dpe
sufficient conditions for arranging MIB, LIB, and parity bits Using the UDE formulas, the asymptotic behavior of a code
as in Fig. 2. The corresponding codeword is in the forwith a given degree distribution can be estimated. Moreover,
of ¢ = [MIB|P,|LIB|P,], where the parity bits have beenwe can optimize the degrees so that we have low error rates
divided into two partsP; and P. for MIB while keeping the overall performance comparable
Lemma 2:Let H; = [A|H,1] and H, = [B|C|E|Hps] to other codes. For a giveR and«, optimal values ford,,1,
denote the parity-check matrices that correspondstoand das2, dpi1. dpi2, dr, dp2, de1, de2, and~y need to be found.
G2, respectively. Herel, H,, B, C, E, andH,, are matrices However, we have two equality constraints imposed by edge
of sizemy x kpr, m1 X my, mo X kpr, mo X my,meo X kr,, and constraints. These constraints are given by
mo X Mg, respectively. The assumption of separating MIB, .
LIB, and PB gs shovaln in Fig. 2 is r3/alid if andponly}g aRdn =51 = R)(der = dpra),
and H,, are full rank. aRdyz + (1 = R)dp12 + (1 — a)Rdp = (1 = 7)(1 = R)(de2 — dp2).
Proof: Let us defineHd, as

where )\, , Aq, are the fractions of edges that are connected
to the MIB andP; in Gy, respectively. Furthermorey,,, A4, ,

Ad5» and\g, are the fraction of edges that are connected to the
MIB, P, LIB, and P, in G, respectively. These parameters

are obtained by\;, = O‘Rﬁf“, Ady, = %ﬂpu, Ay =

Therefore, we require to optimize seven independent variables.
I H,, 0 We consideredi., and~ as dependent variables. By setting
P ( C Hp, ) some upper bounds for the degrees, we can search through all
The columns ofH,, correspond to the PB if and only i, the p:)ssible values f?r d,a?éee_ﬁhand sel;act th_e ones tha_tdresu(;t i
is full rank. This is possible if and only iff,, and H,, are very low error rates or - he CO.St unc'qon IS considere
asMI (for some large integef for which M is very close to

full rank. . ts steady state value). It should be noted that the rate of the
Next we derive density evolution formulas for the propose R
code corresponding to'; is given by R, = —2~——=. For
ensemble. aR+7(1—R)

a fixed R and«, the larger isy, the smaller areR and BER

) . for MIB. On the other hand, we need to ke&p Iarge such

A. UEP Density Evolution (UDE) that the performance of LIB remains acceptable. Therefore,
Here, we derive the UDE formulas for the proposed ensemve impose a lower bound on the rag. Note that since the

ble. See Fig. 2 for the definitions @fs1, dar2, dpi1, dpi2, UDE formulas represent the asymptotic performance, every

dr, dp2, de1, anddee. Let M ; andpq,; denote the expected code obtained by the UDE formulas would not be necessarily

fractions of erasure messages that are received by the cheplimal for finite-length codes. Therefore, we further refine

nodes inG; from the variable nodes that correspond to MIBhe solutions for finite-length codes by choosing the one that

and P, respectively. LetMs ;, p12., L;, andpy; denote the has highest performance using iterative decoding.

expected fractions of erasure messages that are received by the

check nodes ;5 from the variable nodes that correspond t8. Simulation Results

MIB, Py, LIB, and P, respectively. LetM; andp, ; denote  Consider the problem of designing a raté2 UEP code
the expected fractions of erasure messages that are sent tq; o = 0.1. Let us assume the following search space:
incident edge from the variable nodes that correspond to Mg, dMQadL < 25, dp11,dp12,dp2 < 5, der,de2 < 15, and
and Py, reSpeCtlvely Let alsql (7"1) denote the probablllty R > (.8. US|ng the UDE formulas, we Opt|m|ze the codes.

that an erasure message is passed from the check nOdeFo‘iOexample we picked a code that resultshii = 0 and
the variable nodes irf/; (G2). Note that subscript is the [, — 7.9 x 10731 for e = 0.45 and I = 1000 iterations. This

iteration number. The UDE formulas fér> 0 are given by  code also results il/; = 2.85 x 10726 and L; = 2.49 x

10712 for e = 0.45225. Table | summarizes the degrees for

Mio = Mo = Lo =pi1,0 = Di12,0 =€, ha
the optimized code.

My 41 = qudMl 1 ;im’ Myiy1 = ET?M2*1QZ¢MI7 For the finite-length case, We_found the BERs versus the
 dpni—1 dpia  dpia—1 dpis channel erasure probability for this code when the code length
P11i+1 = €4; Tty Pr2it1 = €7y % is n = 4000 (ky = 200, kz, = 1800, my = 28, my = 1972)
del dp271

Liy1 =eri™ ™7, D2,it1 = €T , and the maximum number of decoding iterationg(8. Fig. 3
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TABLE | o
DEGREE DISTRIBUTIONS OF THE PROPOSED RATE/2 UEP-LDPCCODE.

dyr | dae | dpir | dpi2 | dr | dp2 | der | de2 ol
1 22 2 2 3 2 9 7 0.0143

shows the performance of the proposed code compared with ’
the previous code presented in [3] with, = 23, d;, = 3,
d, = 2, andd, = 7. Fig. 3 shows that the performance of MIB = |
has improved by about one order of magnitude. On the other 1’
hand, the performance of LIB has degraded slightly for large -
¢, although LIB does not show an error floor as opposed to the | , , e B (reviows method)
code in [3]. We also included the BERs f&% and P, in the s : : 4 LIB (Previous method)
figure. AlthoughP; has a total degree which is much smaller "0 ot ”’ch o eras}:ﬁpmbabimyyg‘* 0.5 046

than that of MIB, the BER performance @4 and MIB are

close. This is because the only neighbors of the check no@gs 3. comparison between the proposed method and the method in [3].
in G; are MIB and P,. Hence, certain messages from MIBThe codes are of length = 4000, rate1/2, ando = 0.1.

help P, to be determined.

We also illustrated the performance of the proposed code
when n = 1000 (kM = 50, k, = 450, m; = 7, mgy = 10°
493) in Fig. 4. For comparison, we depicted the performance
of the code presented in [3] and a BEC-optimized irregular ¢
code, referred to as Code found from [4] by setting the 1
maximum allowable degree 5. The degree distribution for
Codel is given byA(x) = 0.249762+0.2471622 +0.1482° +
0.0033262° + 0.351742'° and p(x) = 27. We showed the
performance of); = 50 highest degree nodes (as MIB) and
rest of the nodes separately for Cotle We note that the
performance of MIB in the proposed code is by far (three
orders of magnitude for = 0.38) better than the performance .

1074 —H— 950 lowest degree nodes, Code 1 H

of MIB in Code 1. 03 0385 039 039 0a 0405 041 0415 042 o 0

Channel erasure probability: €

Bit errof

~—#— MIB (Proposed method)
—+— LIB (Proposed method)

—A— P, (Proposed method)

P, (Proposed method)

3,

=)

Bit error rate

. —#— MIB (Proposed method)
——LIB (Proposed method)
—%= MIB (Previous method)
107% —+LIB (Previous method) A

—4— 50 highest degree nodes, Code 1

I1l. EFFICIENT ENCODING

Here we present an efficient encoding scheme for the ¢
dp11 = 2 anddpz = 2, which happens in many optimized

cases.H,, and Hy, are full rank matrices by Lemma 2. It ,ytimize the codes. We compared our results with the previous
can be seen easily thaf,, (H,) is either anm; x mi  reqits on UEP-LDPC code presented in [3] for two lengths
(m2 x my) dual-diagonal matrixQ; (Q2) or its column "0 andy, = 4000. We noted that the proposed method
permutation. Lett,, = Q,11, and Hy; = QI for some  gjonificantly decreased the BERSs for the MIB. Moreover, the
random permutation matrice$l; and II,. A systematiC herformance of the code for less important bits improved
generator matrix for the parity-check matrix for small channel erasure probabilities. Fer= 1000, we
e (A i, 0 0 ) also co_mpared the proposed cpde with a BEC-optimize_d code
B C E Q) by setting a subset of the highest degree nodes with the
corresponding size as MIB. The results showed the superiority

ig, 4. Comparison between the proposed method, the method in [3], and
el. All the codes are of length = 1000 and ratel /2.

is given by 4 o ; .
- R of our code. Finally, an efficient encoding scheme for a special
Go [Temxiy AR 0 (BT AT 9 ee, T 2) - case of the proposed method was developed.
o 0 Tep <k, E°Qy "Iy
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