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TABLE V
NUMBERS OF COSETS OF WEIGHT 6

TABLE VI
NUMBERS OF COSETS OF WEIGHT 7

TABLE VII
NUMBERS OF COSETS OF WEIGHT 8

weightdistribution is uniquely determined. In the tables, # lists the num-
bers of cosets for these weights. For cosets of weights 4; 5; 6; 7; 8; the
weight distributions are written using parameters s, t, and the numbers
of cosets with a givenweight distribution are listed in Tables III–VII, re-
spectively. We remark that the unique coset of weight 11 is the shadow
of C46 (see, e.g., [4] and [9] for the definition of the shadow).
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Abstract—This correspondence introduces a framework to design and
analyze low-density parity-check (LDPC) codes over nonuniform channels.
We study LDPC codes for channels with nonuniform noise distributions,
rate-adaptive coding, and unequal error protection. First, we propose a
technique to design LDPC codes for volume holographic memory (VHM)
systems for which the noise distribution is nonuniform. We show that the
proposed coding scheme has an easy design procedure and results in effi-
cient codes for holographic memories. An important property of the pro-
posed technique is the design of the codes that have a low error floor and low
variable node degrees, while maintaining performance close to the Shannon
limit. We then show that punctured LDPC codes can be studied as a spe-
cial case of our design methodology for nonuniform channels. Finally, we
propose a method to generate LDPC codes that can provide unequal error
protection in addition to having a good overall performance. Moreover, the
highly protected bits can be decoded without requiring the entire word to
be decoded.

Index Terms—Bipartite graphs, error floor, iterative decoding, low-den-
sity parity-check (LDPC) codes, nonuniform channels, punctured codes,
unequal error protection.

I. INTRODUCTION

In this correspondence, we study three closely related applications of
low-density parity-check (LDPC) codes: coding for nonuniform chan-
nels, rate-compatible coding using punctured codes, and unequal error
protection. In the first application, we concentrate on the design and
analysis of LDPC codes over nonuniform channels. Specifically, we
focus on volume holographic memory (VHM) systems that can be
modeled as a set of parallel channels as in Fig. 1. In [1], [2] we have
already shown that using proper LDPC codes instead of conventional
coding schemes can result in more than a 50% increase in the storage
capacity of these systems. In the second application, we investigate
punctured LDPC codes and show that they can be considered as a spe-
cial case of our model for nonuniform channels. Finally, we study un-
equal error protection using LDPC codes.
First, we investigate the design of LDPC codes over a set of parallel

subchannels. Consider Fig. 1, where we transmit bits over several bi-
nary-input output-symmetric channels. For simplicity, we may assume
that the channels are independent. One trivial approach is to design a
separate error-correcting code for each of the channels. Here, we are
interested in designing only one LDPC code as shown in Fig. 1. Sup-
pose we use a code of length n. We transmit any codeword over the set
of channels such that n(j) bits in any codeword are transmitted over
the jth channel. Let pj = n

n
. Assume 0 < pj for j = 1; . . . ; kr .

Let zj be the random variable that is equal to the log-likelihood ratio
(LLR) of a received bit from the jth channel. Then, if the bits that are
transmitted over the different channels are chosen randomly from the
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Fig. 1. Several parallel channels.

n bits in a codeword, the set of parallel channels can be modeled as a
single channel having the LLR that has the distribution

PZ(z) =

k

j=1

pjPZ (z): (1)

Therefore, good degree distributions for LDPC codes can be found by
the methods described in [3] and [4] for the corresponding PZ(z).

The first goal of this correspondence is to show that for certain prac-
tical problems, we can employ an improved method that provides some
advantages over the above method. We consider VHM systems and
show that they can be modeled as a set of parallel channels as in Fig. 1.
Then, we introduce the ensemble of graphs that are used over parallel
channels. We present the asymptotic analysis of the performance of the
corresponding codes.We then discuss the designmethodology for prac-
tical systems and we present some results for VHM systems. Relevant
work regarding the application of LDPC codes for parallel channels
can be found in [5].

Second, we consider the construction of rate-compatible LDPC
codes via puncturing, one of the most common methods used to
construct rate-compatible codes. In this method, in order to change
the rate of a code to a higher rate, we puncture (delete) a subset of
the codeword bits. Puncturing has been studied for convolutional and
turbo codes [6]–[8]. The near Shannon limit performance of LDPC
codes [4], [9], [10] motivates us to construct rate-adaptive LDPC
codes. Previous work on finding puncturing patterns for LDPC codes
is given in [11] where it is shown that punctured LDPC codes exhibit
desirable properties. First, the performance of a good LDPC code is
maintained for a wide range of rates (as defined in Section III, we
define the performance as the ratio of the code rate to the channel
capacity for small enough bit-error rates (BERs)). Second, there is
no theoretical limitation on the number of rates or the values of rates
we can generate. In Section III, we present some results on punctured
codes and show that a randomly punctured LDPC code usually has a
good performance. We show that a punctured code can be modeled
as a code that is used over two parallel channels as Fig. 1. In this
model, punctured bits are transmitted over the second channel that has
a zero capacity. Thus, our proposed density evolution formulas for the
parallel channels can be used to find optimum puncturing patterns for
the LDPC codes.

Third, we consider a closely related problem of unequal error pro-
tection (UEP). Some previous works on UEP codes can be found in
[12]–[15]. In Section IV, we will be concerned with a possibly uni-
form channel; however, we would like to impose intentional nonuni-
form BERs for different sets of bits. In other words, we would like to
protect some bits more than others. In particular, we are interested in
unequal error correction for data frames. A transfer frame consists of
a header, a body, and a trailer. We usually want a smaller error prob-
ability for the header information, which contains important routing
information such as the destination address and the frame number. It
is also desirable to be able to read the header data without decoding
the whole frame. This prevents all intermediary routers from having to
decode the entire frame.

Specifically, suppose we send data in the forms of frames of length n
over a network. These n bits include the redundant bits due to the error-
correcting code. Moreover, suppose a very small fraction of the data in
a frame (the header bits), consisting of �(n) bits, is very important to
us. Let us call them important bits. We need a coding scheme with the
following properties. First, the important bits must have a considerably
smaller error rate than the rest of the bits in the codeword. Second, for
a given code rate, the average BER of the code must be acceptable. In
other words, we want to minimize the price that we may have to pay
for the unequal error protection. Thus, we would like the UEP code to
have overall performance close to the best ordinary codes for the same
rate and block length. Third, we want to be able to decode the header
data without decoding the whole frame. Our goal in Section IV is to
show that we can satisfy the above requirements with LDPC codes.
The good performance of LDPC codes makes them good candidates
for the problem described above.
Throughout the correspondence we assume the following termi-

nology. By a graph we mean a simple graph, i.e., a graph with no loops
(edges joining a vertex to itself) and no multiple edges (several edges
joining the same two vertices). Let A be a subset of the vertices in the
graph g. Then N(A) = N1(A) shows the set of neighbors of A in
g. More generally, for j 2 , N j(A) is the set of vertices in g from
which there is path of length j to a vertex in A. Let D be a subgraph
of g such that its vertex set is A. We say D is induced by A if D
contains all edges of g that join two vertices in A. For a square matrix
M , r(M) denotes the spectral radius ofM . In other words,

r(M) = maxfj�j : � is an eigenvalue ofMg:

Similar to [4], for a random variableX with distribution FX we define

Pe(FX) = PrfX < 0g+
1

2
PrfX = 0g:

II. NONUNIFORM ERROR CORRECTION

A. VHM Systems

Some practical applications may benefit from the use of nonuniform
error protection. For example, in holographic data storage, information
is recorded and retrieved in the form of two-dimensional data pages
(i.e., two-dimensional patterns of bits). The bits in a page are subject
to different sources of noise and interference (such as inter-page inter-
ference (IPI), limited diffraction, aberration, misalignment error, and
nonuniform erasure [16]). The noise distribution at any point in the
page is obtained by the superposition of these noise sources.We assume
that the noise is Gaussian and the signal-to-noise ratio (SNR) decreases
as we move from the center to the corner of the page [16]. Typically,
the raw BER might vary by two or three orders of magnitude over a
page. The common approach to solve the nonuniform error protection
problem is to use an interleaver followed by a Reed–Solomon (RS)
code [16]. It has been shown through simulations that LDPC codes op-
timized for nonuniform channels, result in an increase in the storage
capacity of a typical holographic data storage by more than 50% com-
pared to the approach using an interleaver and an RS code [1], [2]. In
this section, we discuss the design methodology for the LDPC codes
that are used in theVHMsystems. However, note that this design proce-
dure is also applicable to other systems such as rate-compatible codes,
orthogonal frequency-divisionmultiplexing (OFDM) systems andmul-
tilevel coding.
Consider a VHM page of N � N pixels. Each pixel is subject to

noise with a probability density that is dependent on the pixel location
in the page. Generally, pixels at the corner of a data page have higher
probability of error than those at the center of the page. We divide this
page into kr regions in which pixels are subject to almost the same
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noise power. Let the regions beR1; R2; . . . ; Rk . All the bits in a page
are written or read simultaneously. Thus, this page can be modeled as
kr parallel binary input channels as in Fig. 1.

B. Ensemble g(�; �)

There are several ways to define the ensembles of LDPC codes suit-
able for nonuniform channels. We introduced such an ensemble in [1]
but in this correspondence we use a slightly simpler ensemble. Again,
suppose we use a code of lengthn, and we transmit each codeword over
the set of channels such that n(j) bits from every codeword are trans-
mitted through the jth channel. Let (x1; x2; . . . ; xn) be a codeword.
Let alsoW (j) be the set of bits in the codeword that are transmitted over
the jth channel (type j bits). Thus, we have jW (j)j = n(j), where j � j
denotes the cardinality of the set. For example, in the VHM system,
W (j) is the set of bits in the jth region (i.e.,W (j) = fxi : xi 2 Rjg).
Now we define the ensemble g(�; �) of bipartite graphs for nonuni-
form error protection. Let E be the set of edges in the graph and let
E(j) be the set of edges that are incident with a variable node of type
j. Also, letE(j)

i be the set of the edges that are adjacent to the variable
nodes of type j and degree i. We define

�
(j)(x) = �

(j)
i x

i�1 (2)

where

�
(j)
i =

jE
(j)
i j

jE(j)j
: (3)

Let � = f�(j)(x) : j = 1; . . . ; krg. Let also �(x) = �ix
i�1,

where �i is the fraction of edges connected to a check node of degree i
[4]. We define the ensemble g(�; �) as the ensemble of bipartite graphs
with the degree distributions given by� and �. In other words, in the en-
semble g(�; �), variable nodes corresponding to bits of different types
may have different degree distributions. In fact, we propose to design
codes with the prior knowledge of which bits are transmitted over each
channel. Our aim in this correspondence is to show that this method
has some advantages in certain applications.

C. Asymptotic Analysis

Similar to [4], we can find the density evolution formulas for the
ensemble g(�; �). Let us define

q
(j) =

jE(j)j

jEj
: (4)

Let m(l);(j)
vc denote the message that is sent from a variable node

v of type j (i.e., v 2 W (j)) to its incident check node c at the lth
iteration of the message passing algorithm. Let also m

(l)
cv denote the

message that the check node c sends to its incident variable node. Let
P
(j)
l andQl denote the densities of random variablesm(l);(j)

vc andm(l)
cv ,

respectively. Let also P 0l be the density of the message that is sent on
a randomly chosen edge (from the variable node to the check node) at
the lth iteration. Then, it can be shown that the formulas for the density
evolution can be written as

P
(j)
l =P

(j)
0 
 �

(j)(Ql) (5)

P
0

l = q
(j)
P
(j)
l (6)

Ql =��1 � � P
0

l�1 (7)

where 
 denotes convolution and � is defined in [4] in the following
way. If Z is a random variable with the distribution FZ , then �(FZ) is
defined as [4]

�(FZ)(s; x) = I(s=0)�0(FZ)(x) + I(s=1)�1(FZ)(x) (8)

where I is the indicator function and

�0(FZ)(x) = 1� F
�

Z � ln tanh
x

2

�1(FZ)(x) =FZ ln tanh
x

2
: (9)

Note that FZ in (8) will be the corresponding distribution for P 0l�1.
Let c(j) be the capacity of the jth binary channel in Fig. 1 and sup-

pose that we use a randomly chosen LDPC code from the ensemble
g(�; �). Using (5)–(7) we can prove the following lemma.

Lemma 1: Suppose c(j) < 1 for j = 1; . . . ; kr and kr <1. Then,
for any i; j 2 f1; 2; . . . ; krg we have lim

l!1
Pe(P

(j)
l ) = 0 if and only

if lim
l!1

Pe(P
(i)
l ) = 0.

Proof: (Sketch) Using (5) and the assumption c(j) < 1, we
conclude that to have lim

l!1
Pe(P

(j)
l ) = 0, the density Ql should

converge to a Delta function at infinity. This means that for any
i 2 f1; 2; . . . ; krg, we must have

lim
l!1

Pe(P
(i)
l ) = 0:

Using Lemma 1 and (5)–(7) we can optimize the degree distribu-
tion of the code for the given channels. It seems that the design of good
codes from the ensemble g(�; �) is more difficult than the design of the
ordinary irregular LDPC codes because of the larger number of param-
eters involved in the optimization. However, we will show that finding
a good degree distribution for a set of parallel channels is simpler than
the optimization of ordinary LDPC codes. The reason is that we can
use simpler ensembles such as semiregular ensembles (which will be
defined later). In fact, the simplicity of design is one advantage of using
the ensemble g(�; �).
Most of the results for ordinary LDPC codes such as the concentra-

tion theorem, the cycle-free convergence, the stability condition of [3]
and [4], and the Gaussian approximation of [17] can also be generalized
for the ensemble g(�; �). The Gaussian approximation formulas for
ensemble g(�; �) are given in the Appendix. Here we give the stability
condition for this ensemble. Other generalizations are straightforward.
For simplicity, we derive the stability condition when all the channels in
Fig. 1 are binary erasure channels (BECs) with different erasure prob-
abilities. Let �j be the erasure probability of the jth channel. Note that
for this case, the system of parallel channels is equivalent to a BEC
with the erasure probability

� =

k

j=1

pj�j (10)

where pj = n

n
. However, as wementioned before, it is better to work

with the set of parallel channels instead of the derived single channel.
Let x(j)l be the fraction of erasure messages emitted from the variable
nodes of type j in the lth iteration. Then the density evolution formulas
are

x
(j)
l =x

(j)
0 �

(j)(1� �(1� yl�1))

yl =

k

j=1

q
(j)
x
(j)
l

x
(j)
0 = �j ; for j = 1; 2; . . . ; kr: (11)

Let Xl be

Xl =

x
(1)
l

x
(2)
l

�

�

�

x
(k )
l

: (12)
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Then, the stability condition for the ensemble g(�; �) can be stated as
follows.

Theorem 1: Let �j < 1 for j = 1; . . . ; kr and M be a kr � kr
matrix whose element in the jth row and the ith column is

�ji = �
0(j)(0)�0(1)q(i)x

(j)
0 :

Then, we have the following conditions.

• If r(M) > 1, then there exists a strictly positive constant � =
�(�; �; X0) such that for all l 2 and for j = 1; . . . ; kr , we
have x(j)l > � .

• If r(M) < 1, then there exists a strictly positive constant � =

�(�; �; X0) such that if x(j)l � � for some l 2 and for
j = 1; . . . ; kr , then lim

l!1
x
(j)
l = 0 for j = 1; . . . ; kr .

Proof: By expanding the density evolution formula into the
Taylor series at zero and neglecting high order terms, we get

Xl = MXl�1: (13)

If kXlk is sufficiently small, then we have lim
l!1

Xl = 0 if and only if

lim
k!1

Mk = 0. This is equivalent to r(M) < 1. The rest of the proof

is similar to the proof of the stability condition in [4].

We finally give an upper bound for the rate of the codes from the
ensemble g(�; �) with the maximum likelihood (ML) decoding. This
bound is valid for the iterative decoding as well. It is similar to the
bound given in [18]. Let 'i be the fraction of check nodes of degree i.
Let us define �(x) =

i
'ix

i. By a simple observation, we can find
the following upper bound on the capacity of the LDPC codes over the
BEC. The proof is similar to the one presented in [18] on the bound for
uniform channels.

Theorem 2: Consider kr parallel binary erasure subchannels as in
Fig. 1 with erasure probabilities �1; �2; . . . ; �k . Then for an arbitrarily
small error probability we must have

1�R �
�

1� �(1� �0)
(14)

where �0 = k

j=1 q
(j)�j and q(j) and � are given by (4) and (10).

D. Advantages of the Ensemble g(�; �)

Here we briefly explain the advantages of using the ensemble
g(�; �). These advantages are further explained and verified using
simulations in Section V. Note that in our model, we know which
subsets of bits are transmitted through each channel. The important
fact about the ensemble g(�; �) is that we use this information in
the code design. Note that in ordinary ensembles of LDPC codes,
we do not use this information in the code design, instead we use
the average density of the LLRs of channels for each bit. This extra
information results in several advantages of the ensemble g(�; �) over
the ordinary ensembles. The first advantage is that we can use lower
values for variable nodes in the degree distribution. In other words, we
can obtain sparser codes using the ensemble g(�; �) having the same
performance of ordinary LDPC codes. This results in faster decoding
and more efficient implementation.

In ordinary LDPC codes ensembles, in order to approach the channel
capacity we need to have a high number of degree-two variable nodes in
the graph [19]. Thus capacity-approaching LDPC codes usually suffer
from the error floor problem. However, in the ensemble g(�; �), since
we use more information in the code design, we can have codes with a
low number or even no degree-two variable nodes that still have thresh-
olds close to the Shannon limit. This is particularly very important in
data storage systems such as holographic memories because a very low
error probability is required.

Another advantage is simpler design. It is worth noting that in ordi-
nary LDPC codes, regular ensembles usually do not have thresholds
close to the Shannon limit. Thus, in ordinary LDPC codes in order
to approach channel capacity we need to use highly irregular codes.
However, in the ensemble g(�; �) part of the required irregularity is
achieved by channel nonuniformity. In fact, we will show in Section V
that we can approach the channel capacity by using semiregular codes
(codes in which bits that are transmitted through the same channel cor-
respond to variable nodes with the same degrees). This will simplify
the degree optimization significantly.
Finally, for short codes, we can get better performance by using the

ensemble g(�; �) because more information is available in the code
design. Note that ensemble g(�; �) is a generalization of the ordinary
ensembles of LDPC codes. In fact, by choosing all �(j)(x) equiva-
lent we obtain an ordinary ensemble of LDPC codes. Thus, in all cir-
cumstances, the performance of the codes obtained from the ensemble
g(�; �) is at least as good as the codes obtained from ordinary ensem-
bles.

III. RATE-COMPATIBLE LDPC CODES

In this section, we are concerned with punctured codes over binary-
input output-symmetric memoryless (BIOSM) channels. We restrict
ourselves to normalized channels [10]. A normalized channel is de-
fined as the channel obtained by concatenation of a BIOSM channel
with log-likelihoodmappings. The normalization of a channel is a loss-
less process because the set of log likelihoods is a sufficient statistic for
decoding. Thus, we say two channelsC1 andC2 are equivalent if their
normalized channels are the same. We represent the capacities of the
channels by c1 and c2, respectively.We first prove the following lemma
that is useful for modeling of punctured codes.

Lemma 2: A normalized BIOSM channel has zero capacity if and
only if the received LLR is equal to zero with probability one.

Proof: Let X and Y be the random variables representing the
input and output of a BIOSM channel, respectively. We define the
random variable U in the following way. We let the input to the
channel be X = 1. If y is the output of the channel, then

U = log
prfX = 1jY = yg

prfX = �1jY = yg
; when the channel input is X = 1:

(15)
Then the capacity of the normalized channel is given by [10]

c = 1� E[log2(1 + e
�U )jX = 1]: (16)

Thus, if U = 0 with probability one, then c = 0. Moreover, if c = 0,
we have E[log2(1 + e�U)] = 1. If we assume p(u) is the probability
density function of U , we have

1 =

+1

�1

log2(1 + e
�u)p(u)du log2(1 + e

�u)p(u)du

=prfU = 0g

+

(0;+1)

[log2(1 + e
�u)� log2(1 + e

u)e�u]p(u)du (17)

where we used p(u) = eup(�u) [4]. Since we have prfU = 0g � 1
and [log2(1 + e�u) � log2(1 + eu)e�u] < 0 for u 2 (0;1), we
conclude prfU = 0g = 1.

We would like to design rate-adaptive LDPC codes that use the same
encoder and decoder for all rates. Let = fr1; r2; . . . ; rsg be the
set of different rates that are needed. Let rp be the rate of the parent
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Fig. 2. A model that describes puncturing over a binary channel.

code (i.e., the lowest rate in ). We consider the following scheme.
We design an optimized LDPC code of rate rp = k=n where k and n
are the lengths of information blocks and the codewords, respectively.
To generate a code with a new rate, we find an optimum puncturing
of a subset of bits in the codeword and send the punctured codeword
to the receiver. It is assumed that the decoder knows the positions of
the punctured bits in the codeword. At the beginning of the iterative
decoding, we need to compute LLRs in the decoder. The LLRs for the
punctured bits are set to zero.

Let us define the performance of a rate-compatible code over a
channel as r

c
where c is the channel capacity and r is the maximum rate

of the code for which the error probability is less than a required value.
When we consider asymptotic behavior of codes, r is the maximum
rate for which an arbitrarily small error probability is achievable. Now
consider a time-varying binary-input output-symmetric channel [4]
which can be described by its transmission conditional probability
P (yjx; �) where � 2 [�min; �max] is time variant. For example,
for binary-input additive white Gaussian noise (BIAWGN) channels,
� can be the variance of the noise. Let c(�) be the capacity of this
channel. We may assume that c(�) is a decreasing function of �.
We design an optimal LDPC code for the rate rp that is used when
� = �max. Now, suppose the channel quality improves. In other
words, the value of the parameter � is reduced to a value less than
�max. By puncturing, we increase the code rate from rp to r(�) such
that the error probability still becomes less than the required value. If

rp
c(�max)

>
r(�)

c(�)

then we would have a performance loss due to puncturing. Our goal is
to minimize the performance loss by finding a good puncturing pattern.

To investigate the performance of punctured LDPC codes, we con-
sider the model depicted in Fig. 2. In this model, it is assumed that the
unpunctured bits are transmitted through the channel and the punctured
bits are transmitted through a virtual channel with a zero capacity. In
fact, by Lemma 2, a normalized BIOSM channel with zero capacity is
equivalent to a BEC with erasure probability one. Let p be the fraction
of punctured bits and define req(�) to be the code rate of the overall
channel in Fig. 2. In other words, req(�) is the code rate if we con-
sider both punctured and unpunctured bits. With this definition, it is
clear that req(�) = rp. Note that Ceq = Ceq(�) is the channel that
consists of two subchannels C1 and C2 with capacities c(�) and zero,
respectively. Therefore, a fraction p of bits are transmitted through C2

and the rest of the bits are transmitted through C1. Let ceq(�) be the
capacity of Ceq(�). In Fig. 2, we have

ceq(�) = (1� p)c(�); r(�) =
rp

(1� p)
: (18)

Therefore, we have a performance loss due to puncturing, if and only
if ceq(�) > c(�max). Let z denote the LLR of the received bits and
$(z;�) be the density of z when the all-zero codeword is sent. Then
by the following theorem, we identify the channels for which the code
performance does not change due to random puncturing. For example,
as a special case of the following theorem, we conclude that for a BEC
in which � is chosen to be the erasure probability, a random puncturing
results in no performance loss. In fact, the performance of the randomly
punctured code is the same for all rates. It is important to note that for
other types of channels, we usually have some performance degrada-
tion because of puncturing. Therefore, we need to optimize the punc-
turing pattern for these types of channels.

Theorem 3: Let $(z;�) = �(�)�(z) + (1� �(�))f(z) specify a
normalized channel in which � is an increasing function of � such that
for all � 2 [�min; �max], we have

0 � �(�) � �(�max) � 1� rp and
+1

�1

f(z)dz = 1:

Then, the average performance of any binary block code does not
change by random puncturing if we choose the puncturing fraction
p(�) properly. Moreover, the class of channels defined by $(z;�) is
the only class of normalized BIOSM channels having this property.

Proof: First we prove the following lemma,

Lemma 3: The performance of an arbitrary block code with an ar-
bitrary decoder does not change by random puncturing in the scheme
of Fig. 2 if and only if there exists a puncturing fraction function p(�)
such that for all � 2 [�min; �max], we have ceq(�) � c(�max).

Proof: Suppose the error probability of all decoders in Fig. 2
stays the same for any random puncturing. Then, the probability
density function of the input of the decoders must remain unchanged
by puncturing. This implies that Ceq � C(�max). Moreover, suppose
there exists a puncturing fraction function p(�) such that for all
� 2 [�min; �max] we have Ceq(�) � C(�max). Then if we perform
random puncturing according to p(�), we have

r(�)

c(�)
=

r

1�p

c (�)

1�p

=
rp

c(�max)
: (19)

Therefore, the performance of the code stays the same.

Proof of Theorem 3: Suppose the assumptions of the theorem
hold for $(z;�) = �(�)�(z) + (1� �(�))f(z). We choose

p(�) =
�(�max)� �(�)

1� �(�)
: (20)

It is clear that we have 0 � p(�) � �(�max) � 1 � rp. The LLR
corresponding to Ceq(�) is equal to

(1� p(�))$(z;�) + p(�)�(z) 1�
�(�max)� �(�)

1� �(�)

� �(�)�(z) + (1� �(�))f(z)

= �(�max)�(z) + (1� �(�max))f(z)

= $(z;�max): (21)
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This is the same as the LLR for C(�max). Therefore, we have
Ceq(�) � C(�max). By Lemma 3, we conclude that the performance
of the codes on this channel does not change by random puncturing.

Now suppose we have a time-varying channel that is defined by
$(z;�) such that the performance of codes stays the same by random
puncturing. By Lemma 3, we have Ceq(�) � C(�max). Therefore,
we conclude that$(z;�)(1�p(�))+p(�)�(z) = $(z;�max): This
results in

$(z;�) =
$(z;�max)

1� p(�)
�
p(�)�(z)

1� p(�)
: (22)

Let pm be the maximum possible fraction of punctured bits. It is clear
that pm � 1� rp. Let us define �(�max) = pm and

�(�) =
�(�max)� p(�)

1� p(�)
;

f(z) =
$(z;�max)� �(�max)�(z)

1� �(�max)
: (23)

Since p(�) is decreasing in � and 0 � p(�) � �(�max) � 1 � rp,
we conclude that � is an increasing function of � and 0 � �(�) �
�(�max) � 1 � rp. Moreover, we have

$(z;�) = �(�)�(z) + (1� �(�))f(z) and
+1

�1

f(z)dz = 1:

It is shown in [10] that if we optimize an LDPC code for a sym-
metric channel, the code usually has good performance on other types
of symmetric channels for which the code is not optimized. This prop-
erty of LDPC codes can be used to explain the good performance of
punctured LDPC codes by examining Fig. 2 as follows. The figure im-
plies that the puncturing process can be considered as a change in the
channel instead of the change in the code rate. Therefore, although the
LDPC code is optimized for the channel with the parameter � = �max

(or p = 0) we expect that it also performs well for other values of � for
which p > 0 (note that Ceq is a symmetric channel). However, we can
optimize the puncturing pattern to further improve the performance.

Considering Fig. 2, we can find the density evolution formulas for a
punctured LDPC code over a BIOSM channel using the density evolu-
tion formulas for the ensemble g(�; �). Then, using these formulas, we
obtain good puncturing distributions for LDPC codes. If the channel is
subject to Gaussian noise we can also apply the Gaussian approxima-
tion method. We now show that by applying the Gaussian approxima-
tion formulas of the Appendix we get the same result as [11].

Let mu(l) denote the mean of the messages from check nodes to
variable nodes in the lth iteration. Let also m0 = 2

�
where � is the

variance of C1 in Fig. 2. We define  (1)i to be the fraction of unpunc-
tured variable nodes of degree i among all the unpunctured variable
nodes in the graph. Define  (2)i for the punctured variable nodes sim-
ilarly. If the puncturing fraction is p, we have

 i =(1� p) 
(1)
i + p 

(2)
i (24)

i

 i =
i

 
(1)
i =

i

 
(2)
i = 1: (25)

Our goal is to find f (2)i gi>1 such that the performance of the code
is optimized. We have

�
(j)
i =

i 
(j)
i

k

k 
(j)
k

; j = 1; 2: (26)

Let ppe = q(2) = jE j
jEj

. Using the Appendix we define

h
(1)
i (s; r) =� s+ (i� 1)

j

�j�
�1

� 1� (1� r)(j�1) (27)

h
(2)
i (s; r) =� (i� 1)

j

�j�
�1

� 1� (1� r)(j�1) (28)

h(s; r) = (1� ppe)
i

�
(1)
i h

(1)
i (s; r)

+ ppe
i

�
(2)
i h

(2)
i (s; r): (29)

Then we have

rl = h(s; rl�1) (30)

where s = m0 and r0 = (1 � ppe)�(s) + ppe. As stated in the Ap-
pendix, rl(s) �! 0 if and only if r > h(s; r) for all r 2 (0; 1). We
now set up a linear program to optimize the puncturing pattern. Let us
define �i = (1� ppe)�

(1)
i and �i = ppe�

(2)
i . Here we maximize p for

the given �. Thus, we have the following optimization problem:

max
� ;�

p =
jEj

n
i

�i

i
(31)

with the constraints

h(s; r) =
i

�ih
(1)
i (s; r) +

i

�ih
(2)
i (s; r) < r;

0 < r < 1 (32)

�i + �i =�i: (33)

After finding the optimum values of �i and �i, we can find pi (the
fraction of the variable nodes of degree i that should be punctured) by
the following equations:

Ppe =
i

�i;

�
(2)
i =

�i

ppe

 
(2)
i =

�

i

k

�

k

pi =
p 

(2)
i

 i
: (34)

We note that this is the same as the result in [11].

IV. UNEQUAL ERROR PROTECTION USING LDPC CODES

We now consider a problem closely related to code design for the
nonuniform channels. We will be concerned with uniform channels;
however, we would like to impose intentional nonuniformity at the



2708 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

BERs of different sets of bits. In other words, we would like to pro-
tect some bits more than others. In particular, we are interested in un-
equal error correction for data frames. A transfer frame consists of a
header and a body. The header length is usually small compared to the
body. In fact, it has usually logarithmic length with respect to the frame
length [20]. Thus, if �(n) is the header length, it is reasonable to as-
sume lim

n!1

�(n)
n

= 0. We usually want a very small error probability

for the header information.
Supposewewant to transmit a block of k bits over a BIOSMchannel.

We also want to use at most n � k redundant bits. Let �(n) be the
number of important bits that require higher protection. One approach
is to use two different block codes, one for the important bits and the
other for the rest of the bits. However, it is more interesting to design
only one block code that provides unequal error protection. More im-
portantly, using two different LDPC codes is not efficient for the fol-
lowing reason. Since �(n) is usually a very small number, we have to
use a short-length code for the important bits. However, as we know
LDPC codes do not perform well for short lengths. Therefore, to get a
good BERwemust use a very-low-rate code which is inefficient. Thus,
we need to use a different type of code for the important bits. On the
other hand, it is not clear that using only one LDPC code and imposing
the unequal error protection on the code would result in an efficient
coding scheme. In fact, our aim in this section is to study this.

A. Perfect Protection

Suppose we transmit binary bits over a binary channel with capacity
c(�) where � is the parameter of the channel. We want to use a block
code of rate R that performs unequal error protection. Let PE(C; �)
be the average error rate of the code C when the channel parameter is
equal to �. Let also P �

E(C;�) be the average error rate of the important
bits. Let CR be the class of codes of type C and rate R. For example,
LDPCR is the class of LDPC codes of rate R. We define C�;�R as the
class of unequal error protection codes of type C and rateR that satisfy
the following property. For any C 2 C�;�R if c(�) > �, then we have
P
�

E(C;�) < �.

Definition 1: We say that an unequal error protection scheme C�;�R

perfectly protects the important bits if for any positive numbers � and
� and any code C in CR, there exists a code C0 in C�;�R such that
PE(C 0; �) � PE(C;�).

Intuitively, perfect protection implies an unequal error protection
without paying any price. In other words, even if the channel capacity
c(�) becomes arbitrary close to zero, we are able to get arbitrarily small
error probability for the important bits without loosing anything with
respect to other bits. It can be seen that for asymptotically good codes,
perfect protection is possible only when lim

n!1

�(n)
n

= 0; otherwise, we

violate the fundamental theorem of Shannon capacity. This assumption
is reasonable for applications such as data frames where �(n)� n.

B. An Unequal Error Protection Scheme

Now we propose a scheme for unequal error protection using LDPC
codes. Conventional LDPC codes provide almost equal error protec-
tion. Although high-degree variable nodes have lower error probabil-
ities in irregular LDPC codes, the difference between the error rates
of the variable nodes of different degrees is not considerable (usually,
less than one order of magnitude). Moreover, this difference reduces
when the channel becomes worse. Note that it is usually difficult, if
not impossible, to find good unequal error protection LDPC codes by
searching for different degree distributions. This is because we have to
choose the degree distribution to be extremely irregular (i.e., we have
to choose very high degrees for the important bits), which is usually
harmful if we cannot have a large enough code length.

Let A be the set of important variable nodes and jAj = �(n). We
propose a scheme based on the degree distributions of the vertices in
the sets N0(A) = A;N(A); N2(A); . . . ; Nh(A), where h is a con-
stant. Note that N j(A) consists of variable nodes if j is even. Other-
wise, N j(A) consists of check nodes. As explained in [21], from the
point of view of variable nodes, it is best to have high degrees. On the
contrary, for check nodes, it is best to have low degrees. In fact, our
scheme is based on the above fact. Let gn(�; �) be the ensemble of
irregular graphs introduced in [4] and [22]. That is the ensemble of bi-
partite graphs having degree distribution (�; �) and lengthn. We define
gn(�; �; h; dv ; dc) as the ensemble of bipartite graphs for which the de-
gree of each vertex in N j(A) for j = 0; 1; . . . ; h is equal to dv if j is
even. Otherwise, it is equal to dc. The degree distribution of the vertices
in the rest of the graph is determined by � and � similar to the ensemble
gn(�; �). Note that for simplicity we assume that the degrees of all the
variable nodes in the sets N0(A) = A;N(A); N2(A); . . . ; Nh(A)
are the same and the degrees of all the check nodes in these sets are
the same. We could have also assigned an irregular degree distribu-
tion to the vertices in N j(A). In general, a graph from the ensemble
gn(�; �; h; dv; dc) is similar to a graph from the ensemble gn(�; �)
having the extra condition that the vertices of A and their neighbor-
hood of depth h must have certain degree distributions.

Theorem 4: If lim
n!1

�(n)
n

= 0, then the ensemble of the codes de-

fined by gn(�; �; h; dv; dc) satisfies the perfect protection property.
In other words, for any positive numbers � and � and any code C in
gn(�; �) of rateR, there exists a codeC 0 in gn (�; �; h; dv; dc) having
the same rate as C such that PE(C 0; �) � PE(C;�). Furthermore, if
c(�) > �, we have P �

E(C 0; �) < �.
Proof: For simplicity, we prove the theorem for the BEC. The

extension to other channels is immediate. Let � be the erasure proba-
bility. Thus, c(�) = 1 � �. Suppose we are given positive numbers
� and � and a degree distribution pair (�; �) of rate R. We show that
for sufficiently large n0, the ensemble gn (�; �; h; dv; dc) satisfies the
requirements of the theorem. Define

B =

h

j=0

N
j(A): (35)

Since jBj � max(dv; dc)
h
�(n) we have lim

n!1

jBj
n

= 0. Let xl be
the average fraction of erasure messages which are passed in the lth
iteration of the iterative decoding on a graph g in gn(�; �). Let also
yl be the average fraction of erasure messages which are passed in the
lth iteration of the iterative decoding on a graph g0 in Cn (�; �). As
n0 !1, if we pick a vertex from g0 at random, with high probability,
its neighborhood of depth d does not contain any vertices from the set
B for any constant d. Thus, by arguments similar to those in [3], we
conclude that yl ! xl as n; n0 !1. Therefore, for sufficiently large
n0, we have PE(C 0; �) � PE(C;�).
Now let I be the subgraph of g0 that is induced by the vertices inB,

as shown in Fig. 3. Let tl be the probability that the value of a variable
node in A, the set of important bits, is unknown after the lth iteration.
Note that with high probability the graph I is cycle free. Thus, using
the similar arguments as in [3] and [22], we conclude that for l � h, tl
satisfies tl = z0[1 � (1� zl�1)

d �1]d where

z0 =�

zl = z0[1� (1� zl�1)
d �1]d �1

: (36)

Using (36), we see that for any 0 � � < 1 we can always choose
the parameters h, dv , and dc such that th < �. Hence, we have
P
�

E(C 0; �) < �.

Theorem 4 does not guarantee that the proposed scheme is efficient
for short-length codes. However, it gives some ideas how to design



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005 2709

Fig. 3. Illustration of the subgraph I .

short-length codes. Our simulations suggest that the scheme also results
in good performance for short-length codes.

C. Decoding of Highly Protected Bits

As we mentioned previously, it is desirable in some applications that
we can decode the important bits without having to decode the entire
received word. This is particularly interesting in network applications
where the header has to be protected more than the rest of the bits and
extracted in routers. Here, we show that this is possible using the pro-
posed unequal error-protection LDPC (UELDPC) codes. The key point
is that by the proof of Theorem 4, we conclude that only h iterations
are sufficient to obtain a small enough error probability for the impor-
tant bits. Note that we only need the messages sent to the important
bits at the hth iteration (note that h is an even number). Thus, for the
decoding we only need the subgraph I in Fig. 3.

To decode the important bits we perform the following procedure.
First, the variable nodes in Nh(A) send messages to the check nodes
in Nh�1(A). These messages are simply the LLRs of the variable
nodes based on the observation of the channel. Then, the check nodes
in Nh�1(A) send messages to the variable nodes in Nh�2(A). These
messages are computed based on the messages from Nh�1(A). We
continue until the messages to N0(A) = A are computed. Thus, we
need to compute jE(I)j messages for decoding the important bits
(jE(I)j is the number of the edges of the graph I). Note that the
number of messages that must be computed for decoding the entire
block is equal to jEj � 2l, where l is the total number of iterations in
the message-passing algorithm and jEj is the total number of edges
in the Tanner graph of the code. Let T� and T be the amount of
time required for decoding the important bits and the whole block,
respectively. Then we have

T�

T
=

jE(I)j

jEj � 2l
! 0; as n!1: (37)

In fact, T� = �(�(n)) = o(n) but T = �(n). Therefore, we
conclude that the important bits can be decoded in a much shorter time
than the time required for decoding the entire block.

V. PRACTICAL CODE DESIGN AND SIMULATION RESULTS

A. Practical Code Design for Nonuniform Channels

Let us consider the problem of designing efficient LDPC codes from
the ensemble g(�; �) for theVHMsystems. It is known that long LDPC
codes can have performance close to the Shannon limit. The use of
long LPDC codes is possible in the VHM systems because the whole
memory page is read or stored simultaneously. Since BERs of less than
10�12 are desirable for the VHM systems, we require that the code do
not present an error floor at least for BERs higher than 10�12.

A stopping set S is defined in [23] as a subset of variable nodes
such that all neighbors of S are connected to S at least twice. It is
shown in [24] and [25] that if �2�0(1) < 1 (�2 is the fraction of the
edges connected to the variable nodes of degree two), then the min-
imum distance and the size of the minimum stopping set in the ex-
purgated ensemble increase linearly with respect to the code length.
Here, a constant fraction of the codes in the ensemble with low min-
imum stopping set size are removed in the expurgation. On the other
hand, if �2�0(1) > 1, these quantities are sublinear with high prob-
ability. Until now, all the discovered capacity-achieving sequences of
LDPC codes over the BEC, satisfy �2�0(1) > 1 [26]. Therefore, for
achieving the capacity, we should have a small minimum distance [24].
This implies that capacity-achieving codes have the error floor effect.
In fact, capacity-approaching codes of practical lengths usually have an
error floor at a BER of 10�7 or higher. On the other hand, if the min-
imum distance is linear, the error-floor effect is reduced substantially.
Although we do not have a rigorous proof for this, simulations show
the superiority of these codes in terms of the error-floor effect over the
codes with sublinear minimum distance. Thus, in our designs we al-
ways use the expurgated ensembles with linear minimum distance and
linear minimum stopping set size. Now, we discuss the code design for
the nonuniform error correction. For simplicity, we first consider the
BEC. The VHM systems in which we have BIAWGN channels will be
discussed afterwards.
1) BEC: Consider the case that all the channels in Fig. 1 are BECs

having different erasure probabilities. Let �j be the erasure probability
of the jth channel. Here, we compare the performance of ordinary ir-
regular LDPC codes and the codes from the ensemble g(�; �) selecting
each column of H with probability erased bits.
As an example, consider the case that the number of channels kr = 4

and

�1 = :1�; �2 = :25�; �3 = :5�; �4 = :95� (38)

where � is a constant. Suppose we use half-rate LDPC codes of length
104 in which 2500 bits are transmitted over each channel. Note that the
whole system can be modeled as a BEC with the erasure probability
� = :45�. As a first approach, we consider the performance of the op-
timized half-rate LDPC codes for the erasure channel in [27]. We also
design codes using the ensemble g(�; �) as follows. In our design to al-
leviate the error floor problem we require that �2�0(1) < 1. For design
simplicity, we choose the degree distribution to be semiregular. By a
semiregular degree distribution we mean a degree distribution in which
the variable nodes of the same type (variable nodes corresponding to
bits that are transmitted through the same subchannel) have the same
degree. We also require that the degree distribution of the check nodes
be concentrated at two consecutive values. It is observed that this lim-
itation does not result in considerable performance loss. However, it
makes the optimization simpler [10] and [4]. We denote the ensemble
of semiregular codes by g(D; �) where D = fdj : j = 1; . . . ; krg
and dj is the degree of the variable nodes of type j. Thus, for the above
example, a semiregular degree distribution consists of at most four dis-
tinct degrees for the variable nodes. It may sound that the semiregu-
larity is too restrictive and the performance of the resulting codes would
be much worse than the fully optimized codes. However, this is not the
case. For the length n = 104, the best half-rate ordinary irregular code
that we found in [27] has the following degree distribution:

�1(x) = 0:2498x+0:2472x2+0:1480x5+0:0033x6+0:3517x19

�1(x) =x
7
: (39)

Let CodeA be a randomly chosen code of length 104 from the ensemble
defined by (�1; �1). Note that the maximum variable-node degree is
20 for this code. We now design a semiregular code from the ensemble
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Fig. 4. Performance of different half-rate LDPC codes over the BEC.

g(D; �). To simplify the design we restrict the maximum variable-node
degree to be 7. Therefore, only a few choices are left.We can easily find
the best possible code with the given constraints using density evolu-
tion. For example, we found the following degree distribution:

d1 = 4; d2 = 7; d3 = 3; d4 = 2; dc = 8: (40)

Let Code B be a randomly chosen code of length 104 from the en-
semble that is defined by the above degree distribution. Since the max-
imum variable-node degree in Code B is 7, we also generated the best
code (with respect to threshold) given in [27] with the maximum vari-
able-node degree 7. Let Code C be a randomly chosen code of length
104 from this ensemble. Fig. 4 shows the performance of these codes.
First, we note that both Codes A and C have an error floor higher than
10�5 while Code B does not have any error floor at least for BERs
higher than 10�9. Furthermore, for almost all practical purposes, Code
B is the best among these codes. It is worth noting that the maximum
variable-node degree of Code A is much higher than that of Code B.
We also conclude that Code B has lower BERs than Code C for all
values of �, the average channel erasure probability. The performance
of Code B over one single BEC is also shown in the figure. We ob-
serve that the performance of the code over the nonuniform channel
(four parallel subchannels) is much better than its performance over
the equivalent single channel. This verifies that we have utilized of the
nonuniformity of the channel in the code design. Additionally, if it is
desired, by slightly relaxing the constraints on the ensemble g(D; �),
we can get closer performance to the capacity.

Asymptotically, the probability of a small (logarithmic size) stop-
ping set in the expurgated ensemble that we defined in above (Code B)
goes to zero. Since we are concerned with the error floor, we need to
be careful about variable nodes of degree two. In fact, any cycle whose
variable nodes have degree two constructs a stopping set. Thus, if one

of these cycles exists in our code, we just regenerate the code. Since the
probability of having these small stopping sets is bounded away from
one, it is very likely that we get a code with no small stopping set by a
few trials. It is worth noting that these cycles can be found using simple
graph algorithms [28]. Therefore, we avoid degree-two variable nodes
in our design at Section V-A2. We will show that we can still find very
good codes from the ensemble g(D; �).
2) BIAWGN Channel: We now consider the VHM systems. As we

mentioned before, each page of the VHM system can be considered as
a set of parallel channels having different noise powers. As an example,
we use the VHM system in [2]. In this system, we divide each page into
four regions (kr = 4). The noise is assumed to be Gaussian. Therefore,
the system can be modeled as a set of four BIAWGN channels. The
relative SNRs of different regions are

SNR2 � SNR1 = 1.61 dB

SNR3 � SNR1 = 2.80 dB

SNR4 � SNR1 = 3.74 dB: (41)

We want to design a code of rate 0:85 from the ensemble g(D; �). (In
VHM systems codes with rates between 0:7 and 0:9 are typically used.)
Since it is very important to prevent the error floor (because a BER of
at least 10�12 is needed), we avoid degree-two variable nodes in the
graph. We found the following degree distribution:

d1 = 3; d2 = 4; d3 = 7; d4 = 10; dc = 40: (42)

Fig. 5 shows the performance of this code for the block lengths of
10000 and 100000. As shown in the figure, at the BER of 10�9, the
distances from the capacity are only 0.65 and 1.04 dB for the lengths
105 and 104, respectively. Moreover, the codes do not present any error
floor at a BER of 10�9. Another interesting property that is verified
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Fig. 5. Performance of the irregular LDPC code of rate 0:85 over four parallel BIAWGN channels.

by our experiments is that it is almost always possible to find very
good codes from the ensemble g(D; �) having small maximum vari-
able-node degree when the number of channels is greater than three.
This implies that we can avoid the high complexity degree distribution
optimization. When the number of channels is two or three, a small re-
laxation on the restrictions is needed. For example, one possibility is
to allow two distinct degrees for the variable nodes of each type.

B. Unequal Error Protection

In this subsection, we describe experiments to measure the per-
formance of some codes from the ensemble g

n
(�; �; h; dv; dc). We

showed in previous sections that the asymptotic performance of the
UELDPC codes is good. Thus, here we concentrate on finite-length
UELDPC codes and show that these codes have good performance
even for short block lengths. To design UELDPC codes, we first
need to choose h. Note that taking h = 0 results in an ordinary
LDPC code from the ensemble gn(�; �) in which we assign the
high-degree variable nodes to the important bits. As we mentioned
before, this is not an efficient approach. Our experiment shows that
usually h = 2 results in good codes. For short-length codes (with
lengths between 1000 and 5000), it is not suitable to choose h larger.
We first consider the BEC. We designed half-rate UELDPC codes of
lengths n = 2000 and n = 4000. The value of �(n) was chosen 50
and 100 for n = 2000 and n = 4000, respectively. Let c0 be either
one of these codes and gc be its corresponding graph. Let A be the
set of important variable nodes. We chose the degree of the important
bits as dv = 12 and the degree of the vertices in N(A) as dc = 5.
The degree of the vertices in N2(A) was one of the values 8; 3; and
2. The degrees of all the other check nodes was 8. The degrees of
the rest of the variable nodes were either two or three. To construct
UELDPC codes we use a method similar to one described in [3]. We
assign sockets to the vertices and construct the graph using a random
permutation. The only difference with [3] is that the permutation that
we use is a restricted random permutation to make sure that the vertices
in N0(A) = A;N(A); N2(A); . . . ; Nh(A) take the desired degrees.

Fig. 6 shows the performance of the code c0 when the length of the
code is n = 2000. It also shows the performance of the regular (3; 6)
code of length 2000 which is the best regular LDPC code. We did
not consider irregular codes because their performance is only slightly
better than the regular codes for short lengths. Moreover, there is no
efficient method to find good short-length irregular codes. In Fig. 6,
by bad bits we mean the bits other than the important bits in the code
c0. The figure shows both important bits and the bad bits have smaller
BERs than the BER of the (3; 6) regular code. In particular, the impor-
tant bits have a much lower BER. Fig. 7 shows the same results when
the lengths of the codes are n = 4000. We observe that the results are
similar to the case of n = 2000.
For the BIAWGN channel, let us consider the code c0 and compare

its performance with the (3; 6) regular code. Although we designed
this code for the BEC, it is useful to evaluate its performance over the
BIAWGN channel. Fig. 8 shows the performance of the code c0 and the
regular code for the length n = 2000. We notice that both bad bits and
important bits of the code c0 have better BERs than the regular code.
Additionally, the BER of the important bits is considerably lower than
the BER of the regular code. Since the (3; 6)regular code is considered
to be a good code for length n = 2000, we conclude that the code c0 is
also a good UELDPC code for the BIAWGN channel.
Finally, we would like to emphasize that the assumption �(n) � n

is crucial for the above proposed scheme. For finite-length cases, if the
ratio of the most important bits is comparable with the code length, it
is still possible to design UELDPC codes by choosing higher degrees
for these bits. However, it is an open question whether this code would
be efficient compared with two separate LDPC codes.

VI. OTHER APPLICATIONS

The proposed framework to design LDPC codes for the nonuniform
error correction has several other applications. Multicarrier OFDM and
multilevel coding are among these applications. The OFDM systems
consist of several parallel channels in which some bits experience
higher SNRs than others. Thus, we need to perform nonuniform error
protection. In this case, we are not usually concerned about the error
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Fig. 6. Comparison between the performance of an UELDPC code of length 2000 and the regular (3; 6) code of the same length over the BEC.

Fig. 7. Comparison between the performance of an UELDPC code of length 4000 and the regular (3; 6) code of the same length over the BEC.
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Fig. 8. Comparison between the performance of an UELDPC code of length 2000 and the regular (3; 6) code of the same length over the BIAWGN channel.

floor problem. Instead we have other restrictions. Specifically, we may
not be able to use long codes. It can be shown by simulations that for
finite-length cases, the codes from the ensemble g(�; �) may perform
better than the conventional irregular codes over the parallel channels.
A similar situation exists in multilevel coding.

VII. CONCLUSION

In this correspondence, we proposed a framework to design good
LDPC codes over a set of parallel channels. This method is useful for
many applications such as the volume holographic memories, OFDM,
and rate-adaptive coding systems.We showed that the proposedmethod
has several advantages over the conventional method. First, the design
procedure is very simple since we do not need to perform the high-com-
plexity degree optimization algorithms that are necessary for conven-
tional LDPC codes. Second, using the proposed method, we can find
codes that have near Shannon limit performance and have lower error
floor. Third, for the applications that the code length cannot be large, the
proposed codes can have better performance than the ordinary LDPC
codes. The proposed framework can also be used to design LDPC codes
in other applications such as OFDM systems and multilevel coding.

We also showed that the analysis and optimization of rate-compat-
ible LDPC codes can be done as a special case of our analysis for par-
allel channels. The developed LDPC code employs single encoder and
decoder for all combination of rates that are desired. As opposed to tra-
ditional rate-adaptive convolutional codes, we can generate any com-
bination of rates very easily. We plan to expand on this research and
find methods to design good rate-compatible LDPC codes.

Finally, we investigated unequal error protection using LDPC codes.
In particular, we showed that good UELDPC codes exist for certain ap-
plications in which a small fraction of bits are highly protected.We pro-
posed a technique to design these codes. We showed that these codes

are asymptotically as good as any equal protecting LDPC codes. For
short-length codes, simulations demonstrate that these codes outper-
form regular LDPC codes. Additionally, with the proposed scheme we
can decode the important bits without having to decode the entire block.
In ongoing research, we are exploring this issue further.

APPENDIX

GAUSSIAN APPROXIMATION

If the subchannels in Fig. 1 are BIAWGN, it is possible to use a
Gaussian approximation similar to [17]. This method is useful for de-
signing codes for VHM systems and for finding optimal puncturing
distributions over the Gaussian channels. Here, we give the Gaussian
approximation formulas for the g(�; �). We use the function �which is
defined in [17]. Letm(l)

u denote the mean of messages from the check
nodes to variable nodes in the lth iteration. Let alsom(j)

0 = 2
�

where

�j is the variance of the noise in channel Cj in Fig. 1. Then we have

m
(l)
u =

d

�d�
�1 1� 1�

j;i

q
(j)

�
(j)
i �(m

(j)
0

+(i� 1)m(l�1)
u )

(d�1)

(43)

where q(j) = jE j
jEj

. Similar to [17] we define

fd(s; t) =�
�1 1� 1�

j;i

q
(j)

�
(j)
i �(s(j)

+ (i� 1)t)

(d�1)

(44)
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f(s; t) =
d

�dfd(s; t) (45)

for 0 � t < 1. We can rewrite (43) as

tl = f(s; tl�1) (46)

where

s = (s(1); s(2); . . . ; s(k )) = (m
(1)
0 ;m

(2)
0 ; . . . ; m

(k )
0 )

and tl = m
(l)
u , and t0 = 0. Similar to [17], one can show that tl(s)

converges to infinity if and only if t < f(s; t) for all t 2 +. An
equivalent formulation can be made by the following change of the
variable:

rl =
j;i

q
(j)

�
(j)
i �(s(j) + (i� 1)tl): (47)

We also define

h
(j)
i (s; r) =� s+ (i� 1)

d

�d�
�1([1� (1� r)(d�1)]) (48)

h(s; r) =
j;i

�
(j)
i q

(j)
h
(j)
i (s(j); r): (49)

Then, we have

rl = h(s; rl�1) (50)

where

s = (s(1); s(2); . . . ; s(k )) = (m
(1)
0 ;m

(2)
0 ; . . . ; m

(k )
0 )

and r0 =
j
q(j)�(s(j)). Again rl(s) �! 0 if and only if r > h(s; r)

for all r 2 (0; r0). It is easy to show that rl(s) �! 0 if and only
if r > h(s; r) for all r 2 (0; 1). This fact is useful when we use
linear programming for the optimization of the degree distribution or
puncturing pattern.
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